Fuzzy-logic-based health monitoring and residual-life prediction for composite helicopter rotor


Autoria(s): Pawar, Prashant M; Ganguli, Ranjan
Data(s)

2007

Resumo

A health-monitoring and life-estimation strategy for composite rotor blades is developed in this work. The cross-sectional stiffness reduction obtained by physics-based models is expressed as a function of the life of the structure using a recent phenomenological damage model. This stiffness reduction is further used to study the behavior of measurable system parameters such as blade deflections, loads, and strains of a composite rotor blade in static analysis and forward flight. The simulated measurements are obtained using an aeroelastic analysis of the composite rotor blade based on the finite element in space and time with physics-based damage modes that are then linked to the life consumption of the blade. The model-based measurements are contaminated with noise to simulate real data. Genetic fuzzy systems are developed for global online prediction of physical damage and life consumption using displacement- and force-based measurement deviations between damaged and undamaged conditions. Furthermore, local online prediction of physical damage and life consumption is done using strains measured along the blade length. It is observed that the life consumption in the matrix-cracking zone is about 12-15% and life consumption in debonding/delamination zone is about 45-55% of the total life of the blade. It is also observed that the success rate of the genetic fuzzy systems depends upon the number of measurements, type of measurements and training, and the testing noise level. The genetic fuzzy systems work quite well with noisy data and are recommended for online structural health monitoring of composite helicopter rotor blades.

Formato

application/pdf

Identificador

http://eprints.iisc.ernet.in/26216/1/PVJA26.pdf

Pawar, Prashant M and Ganguli, Ranjan (2007) Fuzzy-logic-based health monitoring and residual-life prediction for composite helicopter rotor. In: Journal of Aircraft, 44 (3). pp. 981-995.

Publicador

American Institute of Aeronautics and Astronautics

Relação

http://www.aiaa.org/content.cfm?pageid=318&volume=44&issue=3&pubid=22&paperid=26495

http://eprints.iisc.ernet.in/26216/

Palavras-Chave #Aerospace Engineering (Formerly, Aeronautical Engineering)
Tipo

Journal Article

PeerReviewed