982 resultados para Mining operations


Relevância:

40.00% 40.00%

Publicador:

Resumo:

"Special publication."

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Includes bibliographies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines Australian media representations of the male managers of two global mining corporations, Rio Tinto and BHP Billiton. These organizations are transnational (or multinational) corporations with assets and/or operations across national boundaries (Dunning and Lundan, 2008), and indeed their respective Chief Executive Officers, Tom Albanese and Marius Kloppers are two of the most economically (and arguably politically) powerful in the world overseeing 37 000 and 39 000 employees internationally. With a 2008 profit of US$15.962 billion and assets of US$ 75.889 Billion BHP Billiton is the world's largest mining company. In terms of its profits and assets Rio Tinto ranks fourth in the world, but with operations in six countries (mainly Canada and Australia) and a 2008 profit of US$10.3 billion it is also emblematic of the transnational in that its ‘budget is larger than that of all but a few nations’ (Giddens, 2003, p. 62).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a method for calculating the in-bucket payload volume on a dragline for the purpose of estimating the material’s bulk density in real-time. Knowledge of the bulk density can provide instant feedback to mine planning and scheduling to improve blasting and in turn provide a more uniform bulk density across the excavation site. Furthermore costs and emissions in dragline operation, maintenance and downstream material processing can be reduced. The main challenge is to determine an accurate position and orientation of the bucket with the constraint of real-time performance. The proposed solution uses a range bearing and tilt sensor to locate and scan the bucket between the lift and dump stages of the dragline cycle. Various scanning strategies are investigated for their benefits in this real-time application. The bucket is segmented from the scene using cluster analysis while the pose of the bucket is calculated using the iterative closest point (ICP) algorithm. Payload points are segmented from the bucket by a fixed distance neighbour clustering method to preserve boundary points and exclude low density clusters introduced by overhead chains and the spreader bar. A height grid is then used to represent the payload from which the volume can be calculated by summing over the grid cells. We show volume calculated on a scaled system with an accuracy of greater than 95 per cent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an automated image‐based safety assessment method for earthmoving and surface mining activities. The literature review revealed the possible causes of accidents on earthmoving operations, investigated the spatial risk factors of these types of accident, and identified spatial data needs for automated safety assessment based on current safety regulations. Image‐based data collection devices and algorithms for safety assessment were then evaluated. Analysis methods and rules for monitoring safety violations were also discussed. The experimental results showed that the safety assessment method collected spatial data using stereo vision cameras, applied object identification and tracking algorithms, and finally utilized identified and tracked object information for safety decision making.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regardless of technology benefits, safety planners still face difficulties explaining errors related to the use of different technologies and evaluating how the errors impact the performance of safety decision making. This paper presents a preliminary error impact analysis testbed to model object identification and tracking errors caused by image-based devices and algorithms and to analyze the impact of the errors for spatial safety assessment of earthmoving and surface mining activities. More specifically, this research designed a testbed to model workspaces for earthmoving operations, to simulate safety-related violations, and to apply different object identification and tracking errors on the data collected and processed for spatial safety assessment. Three different cases were analyzed based on actual earthmoving operations conducted at a limestone quarry. Using the testbed, the impacts of the errors were investigated for the safety planning purpose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Open pit mine operations are complex businesses that demand a constant assessment of risk. This is because the value of a mine project is typically influenced by many underlying economic and physical uncertainties, such as metal prices, metal grades, costs, schedules, quantities, and environmental issues, among others, which are not known with much certainty at the beginning of the project. Hence, mining projects present a considerable challenge to those involved in associated investment decisions, such as the owners of the mine and other stakeholders. In general terms, when an option exists to acquire a new or operating mining project, , the owners and stock holders of the mine project need to know the value of the mining project, which is the fundamental criterion for making final decisions about going ahead with the venture capital. However, obtaining the mine project’s value is not an easy task. The reason for this is that sophisticated valuation and mine optimisation techniques, which combine advanced theories in geostatistics, statistics, engineering, economics and finance, among others, need to be used by the mine analyst or mine planner in order to assess and quantify the existing uncertainty and, consequently, the risk involved in the project investment. Furthermore, current valuation and mine optimisation techniques do not complement each other. That is valuation techniques based on real options (RO) analysis assume an expected (constant) metal grade and ore tonnage during a specified period, while mine optimisation (MO) techniques assume expected (constant) metal prices and mining costs. These assumptions are not totally correct since both sources of uncertainty—that of the orebody (metal grade and reserves of mineral), and that about the future behaviour of metal prices and mining costs—are the ones that have great impact on the value of any mining project. Consequently, the key objective of this thesis is twofold. The first objective consists of analysing and understanding the main sources of uncertainty in an open pit mining project, such as the orebody (in situ metal grade), mining costs and metal price uncertainties, and their effect on the final project value. The second objective consists of breaking down the wall of isolation between economic valuation and mine optimisation techniques in order to generate a novel open pit mine evaluation framework called the ―Integrated Valuation / Optimisation Framework (IVOF)‖. One important characteristic of this new framework is that it incorporates the RO and MO valuation techniques into a single integrated process that quantifies and describes uncertainty and risk in a mine project evaluation process, giving a more realistic estimate of the project’s value. To achieve this, novel and advanced engineering and econometric methods are used to integrate financial and geological uncertainty into dynamic risk forecasting measures. The proposed mine valuation/optimisation technique is then applied to a real gold disseminated open pit mine deposit to estimate its value in the face of orebody, mining costs and metal price uncertainties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Each year, organizations in Australian mining industry (asset intensive industry) spend substantial amount of capital (A$86 billion in 2009-10) (Statistics, 2011) in acquiring engineering assets. Engineering assets are put to use in operations to generate value. Different functions (departments) of an organization have different expectations and requirements from each of the engineering asset e.g. return on investment, reliability, efficiency, maintainability, low cost of running the asset, low or nil environmental impact and easy of disposal, potential salvage value etc. Assets are acquired from suppliers or built by service providers and or internally. The process of acquiring assets is supported by procurement function. One of the most costly mistakes that organizations can make is acquiring the inappropriate or non-conforming assets that do not fit the purpose. The root cause of acquiring non confirming assets belongs to incorrect acquisition decision and the process of making decisions. It is very important that an asset acquisition decision is based on inputs and multi-criteria of each function within the organization which has direct or indirect impact on the acquisition, utilization, maintenance and disposal of the asset. Literature review shows that currently there is no comprehensive process framework and tool available to evaluate the inclusiveness and breadth of asset acquisition decisions that are taken in the Mining Organizations. This thesis discusses various such criteria and inputs that need to be considered and evaluated from various functions within the organization while making the asset acquisition decision. Criteria from functions such as finance, production, maintenance, logistics, procurement, asset management, environment health and safety, material management, training and development etc. need to be considered to make an effective and coherent asset acquisition decision. The thesis also discusses a tool that is developed to be used in the multi-criteria and cross functional acquisition decision making. The development of multi-criteria and cross functional inputs based decision framework and tool which utilizes that framework to formulate cross functional and integrated asset acquisition decisions are the contribution of this research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. The objective is to produce a stereo vision sensor suited to close-range scenes consisting primarily of rocks. This sensor should be able to produce a dense depth map within real-time constraints. Speed and robustness are of foremost importance for this investigation. A number of area based matching metrics have been implemented, including the SAD, SSD, NCC, and their zero-meaned versions. The NCC and the zero meaned SAD and SSD were found to produce the disparity maps with the highest proportion of valid matches. The plain SAD and SSD were the least computationally expensive, due to all their operations taking place in integer arithmetic, however, they were extremely sensitive to radiometric distortion. Non-parametric techniques for matching, in particular, the rank and the census transform, have also been investigated. The rank and census transforms were found to be robust with respect to radiometric distortion, as well as being able to produce disparity maps with a high proportion of valid matches. An additional advantage of both the rank and the census transform is their amenability to fast hardware implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mining equipment technology services sector is driven by a reactive and user-centered design approach, with a technological focus on incremental new product development. As Australia moves out of its sustained mining boom, companies need to rethink their strategic position, to become agile to stay relevant in an enigmatic market. This paper reports on the first five months on an embedded case study within an Australian, family-owned mining manufacturer. The first author is currently engaged in a longitudinal design led innovation project, as a catalyst to guide the company’s journey to design integration. The results find that design led innovation could act as a channel for highlighting and exploring company disconnections with the marketplace and offer a customer-centric catalyst for internal change. Data collected for this study is from 12 analysed semistructured interviews, a focus group and a reflective journal, over a five-month period. This paper explores limitations to design integration, and highlights opportunities to explore and leverage entrepreneurial characteristics to stay agile, broaden innovation and future-proof through the next commodity cycle in the mining industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Australia’s mining boom Global demand for minerals and energy products has fuelled Australia’s recent resources boom and has led to the rapid expansion of mining projects not only in remote locations but increasingly in settled traditionally agricultural rural areas. A fundamental shift has also occurred in the provisioning of skilled and semi-skilled workers. The huge acceleration in industry demand for labour has been accompanied by the entrenchment of workforce arrangements largely dependent on fly-in, fly-out (FIFO) and drive–in, drive–out (DIDO) non-resident workers (NRWs). While NRWs are working away from their homes, they are usually accommodated in work camps or ‘villages’ for the duration of their work cycle which are normally comprised of many consecutive days of 12-hour day- and night-shifts. The health effects of this form of employment and the accompanying lifestyle is increasingly becoming contentious. Impacts on personal wellness, wellbeing and quality of life essentially remain under-researched and thus misunderstood. Sodexo in Australia Sodexo began operations in Australia in 1982, and has since become a leader in providing Quality of Life (QOL) services to businesses across the country. The 6,000 Australian employees are part of a global Sodexo team of 413,000 people. Sodexo in Australia designs, delivers and manages on-site their QOL services at 320 diverse site locations, including remote sites. Sodexo operates in a range of sectors, including the mining industry. Service plans are tailored to suit the individual needs of organisations. Sodexo Remote Sites has previously conducted unpublished research among mining workers in Australia. The results highlighted needs and expectations of Australian mining workers. Main insights about workers’ requirements were directed towards: • contacts with closest; • warm rest time around proper and varied meals; • additional services to help them better enjoy their life onsite and/or make the most of it; • organise their transportation; • promote community living; and • finding balance between professional and personal life. The brief for this current research is aimed at building upon this knowledge. Research brief Expectations for quality of life and wellness and wellbeing services are increasing dramatically. It's getting costlier and more difficult to retain valuable employees. This is particularly the case in the Australian mining sector. Given the level of interest in ensuring healthy workplaces in Australia, Sodexo has commissioned QUT to conduct a literature review. The objectives as specified by Sodexo are: Objective 1: To define the concepts of wellness and wellbeing and quality of life in Australia Objective 2: To examine how wellness and wellbeing are developed within organisations in Australia and how they impact on employee and organizational performance. More specifically, to review the literature that could be sourced about: • challenges of the mining environment; • the mining lifestyle – implications for health, wellness and daily life; • personal health and wellness of Australian mining workers; • factors affecting health in mines and perceived support for health and wellness; and • the impact of employer investment in health on perceptions and behaviour of employees. Objective 3: To determine what impact employee wellness and well-being has on the performance of mining workers. More specifically, to review the literature that could be sourced about: • impact of obesity, alcohol, tobacco use on companies; and • links between employee engagement and satisfaction and company productivity. Accordingly this review has attempted to ascertain what factors an organisation should focus on in order to reduce absenteeism and turnover and increase commitment, satisfaction, safety and productivity, with specific reference to the mining industry in Australia. The structure of the report aligns with the stated objectives in that each of the first three parts address an objective. Part IV summarises prominent issues that have arisen and offers some concluding observations and comments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, an interactive planning and scheduling framework are proposed for optimising operations from pits to crushers in ore mining industry. Series of theoretical and practical operations research techniques are investigated to improve the overall efficiency of mining systems due to the facts that mining managers need to tackle optimisation problems within different horizons and with different levels of detail. Under this framework, mine design planning,mine production sequencing and mine transportation scheduling models are integrated and interacted within a whole optimisation system. The proposed integrated framework could be used by mining industry for reducing equipment costs, improving the production efficiency and maximising the net present value.