984 resultados para Markov Transition Matrix


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The elevated plus-maze is an animal model of anxiety used to study the effect of different drugs on the behavior of the animal It consists of a plus-shaped maze with two open and two closed arms elevated 50 cm from the floor The standard measures used to characterize exploratory behavior in the elevated plus-maze are the time spent and the number of entries in the open arms In this work we use Markov chains to characterize the exploratory behavior of the rat in the elevated plus-maze under three different conditions normal and under the effects of anxiogenic and anxiolytic drugs The spatial structure of the elevated plus-maze is divided into squares which are associated with states of a Markov chain By counting the frequencies of transitions between states during 5-min sessions in the elevated plus-maze we constructed stochastic matrices for the three conditions studied The stochastic matrices show specific patterns which correspond to the observed behaviors of the rat under the three different conditions For the control group the stochastic matrix shows a clear preference for places in the closed arms This preference is enhanced for the anxiogenic group For the anxiolytic group the stochastic matrix shows a pattern similar to a random walk Our results suggest that Markov chains can be used together with the standard measures to characterize the rat behavior in the elevated plus-maze (C) 2010 Elsevier B V All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

enin et al. (2000) recently introduced the idea of similarity in the context of birth-death processes. This paper examines the extent to which their results can be extended to arbitrary Markov chains. It is proved that, under a variety of conditions, similar chains are strongly similar in a sense which is described, and it is shown that minimal chains are strongly similar if and only if the corresponding transition-rate matrices are strongly similar. A general framework is given for constructing families of strongly similar chains; it permits the construction of all such chains in the irreducible case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer simulation of dynamical systems involves a phase space which is the finite set of machine arithmetic. Rounding state values of the continuous system to this grid yields a spatially discrete dynamical system, often with different dynamical behaviour. Discretization of an invertible smooth system gives a system with set-valued negative semitrajectories. As the grid is refined, asymptotic behaviour of the semitrajectories follows probabilistic laws which correspond to a set-valued Markov chain, whose transition probabilities can be explicitly calculated. The results are illustrated for two-dimensional dynamical systems obtained by discretization of fractional linear transformations of the unit disc in the complex plane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The case of two transition tables is considered, that is two squareasymmetric matrices of frequencies where the rows and columns of thematrices are the same objects observed at three different timepoints. Different ways of visualizing the tables, either separatelyor jointly, are examined. We generalize an existing idea where asquare matrix is descomposed into symmetric and skew-symmetric partsto two matrices, leading to a decomposition into four components: (1)average symmetric, (2) average skew-symmetric, (3) symmetricdifference from average, and (4) skew-symmetric difference fromaverage. The method is illustrated with an artificial example and anexample using real data from a study of changing values over threegenerations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rigorous quantum dynamics calculations of reaction rates and initial state-selected reaction probabilities of polyatomic reactions can be efficiently performed within the quantum transition state concept employing flux correlation functions and wave packet propagation utilizing the multi-configurational time-dependent Hartree approach. Here, analytical formulas and a numerical scheme extending this approach to the calculation of state-to-state reaction probabilities are presented. The formulas derived facilitate the use of three different dividing surfaces: two dividing surfaces located in the product and reactant asymptotic region facilitate full state resolution while a third dividing surface placed in the transition state region can be used to define an additional flux operator. The eigenstates of the corresponding thermal flux operator then correspond to vibrational states of the activated complex. Transforming these states to reactant and product coordinates and propagating them into the respective asymptotic region, the full scattering matrix can be obtained. To illustrate the new approach, test calculations study the D + H2(ν, j) → HD(ν′, j′) + H reaction for J = 0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tässä päättötyössä annetaan kuvaus kehitetystä sovelluksesta Quasi Birth Death processien ratkaisuun. Tämä ohjelma on tähän mennessä ainutlaatuinen ja sen avulla voi ratkaista sarjan tehtäviä ja sitä tarvitaan kommunikaatio systeemien analyysiin. Mainittuun sovellukseen on annettu kuvaus ja määritelmä. Lyhyt kuvaus toisesta sovelluksesta Quasi Birth Death prosessien tehtävien ratkaisuun on myös annettu

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Financial time series have a tendency of abruptly changing their behavior and maintain this behavior for several consecutive periods, and commodity futures returns are not an exception. This quality proposes that nonlinear models, as opposed to linear models, can more accurately describe returns and volatility. Markov regime switching models are able to match this behavior and have become a popular way to model financial time series. This study uses Markov regime switching model to describe the behavior of energy futures returns on a commodity level, because studies show that commodity futures are a heterogeneous asset class. The purpose of this thesis is twofold. First, determine how many regimes characterize individual energy commodities’ returns in different return frequencies. Second, study the characteristics of these regimes. We extent the previous studies on the subject in two ways: We allow for the possibility that the number of regimes may exceed two, as well as conduct the research on individual commodities rather than on commodity indices or subgroups of these indices. We use daily, weekly and monthly time series of Brent crude oil, WTI crude oil, natural gas, heating oil and gasoil futures returns over 1994–2014, where available, to carry out the study. We apply the likelihood ratio test to determine the sufficient number of regimes for each commodity and data frequency. Then the time series are modeled with Markov regime switching model to obtain the return distribution characteristics of each regime, as well as the transition probabilities of moving between regimes. The results for the number of regimes suggest that daily energy futures return series consist of three to six regimes, whereas weekly and monthly returns for all energy commodities display only two regimes. When the number of regimes exceeds two, there is a tendency for the time series of energy commodities to form groups of regimes. These groups are usually quite persistent as a whole because probability of a regime switch inside the group is high. However, individual regimes in these groups are not persistent and the process oscillates between these regimes frequently. Regimes that are not part of any group are generally persistent, but show low ergodic probability, i.e. rarely prevail in the market. This study also suggests that energy futures return series characterized with two regimes do not necessarily display persistent bull and bear regimes. In fact, for the majority of time series, bearish regime is considerably less persistent. Rahoituksen aikasarjoilla on taipumus arvaamattomasti muuttaa käyttäytymistään ja jatkaa tätä uutta käyttäytymistä useiden periodien ajan, eivätkä hyödykefutuurien tuotot tee tähän poikkeusta. Tämän ominaisuuden johdosta lineaaristen mallien sijasta epälineaariset mallit pystyvät tarkemmin kuvailemaan esimerkiksi tuottojen jakauman parametreja. Markov regiiminvaihtomallit pystyvät vangitsemaan tämän ominaisuuden ja siksi niistä on tullut suosittuja rahoituksen aikasarjojen mallintamisessa. Tämä tutkimus käyttää Markov regiiminvaihtomallia kuvaamaan yksittäisten energiafutuurien tuottojen käyttäytymistä, sillä tutkimukset osoittavat hyödykefutuurien olevan hyvin heterogeeninen omaisuusluokka. Tutkimuksen tarkoitus on selvittää, kuinka monta regiimiä tarvitaan kuvaamaan energiafutuurien tuottoja eri tuottofrekvensseillä ja mitkä ovat näiden regiimien ominaisuudet. Aiempaa tutkimusta aiheesta laajennetaan määrittämällä regiimien lukumäärä tilastotieteellisen testauksen menetelmin sekä tutkimalla energiafutuureja yksittäin; ei indeksi- tai alaindeksitasolla. Tutkimuksessa käytetään päivä-, viikko- ja kuukausiaikasarjoja Brent-raakaöljyn, WTI-raakaöljyn, maakaasun, lämmitysöljyn ja polttoöljyn tuotoista aikaväliltä 1994–2014, siltä osin kuin aineistoa on saatavilla. Likelihood ratio -testin avulla estimoidaan kaikille aikasarjoille regiimien määrä,jonka jälkeen Markov regiiminvaihtomallia hyödyntäen määritetään yksittäisten regiimientuottojakaumien ominaisuudet sekä regiimien välinen transitiomatriisi. Tulokset regiimien lukumäärän osalta osoittavat, että energiafutuurien päiväkohtaisten tuottojen aikasarjoissa regiimien lukumäärä vaihtelee kolmen ja kuuden välillä. Viikko- ja kuukausituottojen kohdalla kaikkien energiafutuurien prosesseissa regiimien lukumäärä on kaksi. Kun regiimejä on enemmän kuin kaksi, on prosessilla taipumus muodostaa regiimeistä koostuvia ryhmiä. Prosessi pysyy ryhmän sisällä yleensä pitkään, koska todennäköisyys siirtyä ryhmään kuuluvien regiimien välillä on suuri. Yksittäiset regiimit ryhmän sisällä eivät kuitenkaan ole kovin pysyviä. Näin ollen prosessi vaihtelee ryhmän sisäisten regiimien välillä tiuhaan. Regiimit, jotka eivät kuulu ryhmään, ovat yleensä pysyviä, mutta prosessi ajautuu niihin vain harvoin, sillä todennäköisyys siirtyä muista regiimeistä niihin on pieni. Tutkimuksen tulokset osoittavat myös, että prosesseissa, joita ohjaa kaksi regiimiä, nämä regiimit eivät välttämättä ole pysyvät bull- ja bear-markkinatilanteet. Tulokset osoittavat sen sijaan, että bear-markkinatilanne on energiafutuureissa selvästi vähemmän pysyvä.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the transition between exchange rate regimes using a Markov chain model with time-varying transition probabilities. The probabilities are parameterized as nonlinear functions of variables suggested by the currency crisis and optimal currency area literature. Results using annual data indicate that inflation, and to a lesser extent, output growth and trade openness help explain the exchange rate regime transition dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical absorption and emission spectral studies of various phthalocyanine molecules, viz., LaPc, NdPc, SmPc, EuPc, CuPc and ZnPc in a polymer matrix of cyano acrylate are reported for the first time. All the absorption spectra show an intense B band (Soret) in the UV region followed by a weaker Q band in the visible region. The positions of the Q and B bands are found to have dependence on the metallic substitution. Values of the important spectral parameters, viz., molar extinction coefficient (ϵ), oscillator strength (f), radiative transition rate and decay time of the excited singlet state are also presented and compared with other solid matrices. The recorded fluorescence spectrum shows two broad emission bands in the case of NdPc, whereas for ZnPc only a very weak band is observed. The absence of emission bands for the other metallated phthalocyanines is attributed to increased spin orbit interaction and intersystem crossing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schiff base complexes of transition metal ions have played a significant role in coordination chemistry.In the present study we have synthesized some new Mn(II),Co(II) and Cu(II) complexes of Schiff bases derived from 1,8-diaminonaphthalene.Even though we could not isolate theses Schiff bases (as they readily cyclise to form the perimidine compounds),we were able to characterize unequivacally the complexes synthesized from these compounds as complexes of Schiff Bases. We Synthesized three perimidine derivatives ,2-(quinoxalin-2-yl)-2,3-dihydro-1H-perimidine,2-(2,3-dihydro-1H-perimidin-2-yl)-6-methoxyphenol and 4-(2,3-dihyro-1H-perimidin-2-yl)-2-methoxyphenol by the condensation of 1,8-diaminonaphthalene with quinoxaline-2-carboxaldehyde,2- hydroxy-3-methoxybenzaldehyde or 4-hydroxy-3-methoxybenzaldehyde respectively.Theses compounds were used as precursor ligands for the preparation of Schiff base complexes.The complexes were characterized by using elemental analysis ,conductance and magnetic susceptibility measuremets ,infrared and UV-Visible spectroscopy ,thermogravimetric analysis and EPR spectroscopy .We also encapsulated the complexes in zeolite Y matrix and these encapsulated complexes were also characterized. We have also tried theses complexes as catalysts in the oxidation of cyclohexanol and decomposition of hydrogen peroxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider hybrid (fast stochastic approximation and deterministic refinement) algorithms for Matrix Inversion (MI) and Solving Systems of Linear Equations (SLAE). Monte Carlo methods are used for the stochastic approximation, since it is known that they are very efficient in finding a quick rough approximation of the element or a row of the inverse matrix or finding a component of the solution vector. We show how the stochastic approximation of the MI can be combined with a deterministic refinement procedure to obtain MI with the required precision and further solve the SLAE using MI. We employ a splitting A = D – C of a given non-singular matrix A, where D is a diagonal dominant matrix and matrix C is a diagonal matrix. In our algorithm for solving SLAE and MI different choices of D can be considered in order to control the norm of matrix T = D –1C, of the resulting SLAE and to minimize the number of the Markov Chains required to reach given precision. Further we run the algorithms on a mini-Grid and investigate their efficiency depending on the granularity. Corresponding experimental results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we analyse applicability and robustness of Markov chain Monte Carlo algorithms for eigenvalue problems. We restrict our consideration to real symmetric matrices. Almost Optimal Monte Carlo (MAO) algorithms for solving eigenvalue problems are formulated. Results for the structure of both - systematic and probability error are presented. It is shown that the values of both errors can be controlled independently by different algorithmic parameters. The results present how the systematic error depends on the matrix spectrum. The analysis of the probability error is presented. It shows that the close (in some sense) the matrix under consideration is to the stochastic matrix the smaller is this error. Sufficient conditions for constructing robust and interpolation Monte Carlo algorithms are obtained. For stochastic matrices an interpolation Monte Carlo algorithm is constructed. A number of numerical tests for large symmetric dense matrices are performed in order to study experimentally the dependence of the systematic error from the structure of matrix spectrum. We also study how the probability error depends on the balancing of the matrix. (c) 2007 Elsevier Inc. All rights reserved.