929 resultados para Marie Caroline, Queen, consort of Ferdinand I, King of the Two Sicilies, 1752-1814
Resumo:
This work shows the method developed to solve the wheel-rail contact problem via a look-up table with a three-dimensional elastic model. This method enables introduction of the two contact point effect on vehicle movement using three-dimensional analysis of surfaces including the influence of the angle of attack. This work presents several dynamic simulations and studies the impact that the introduction of the two contact points on three dimensions has on wear indexes and derailment risk against traditional bidimensional analysis. Furthermore, it studies advantages and disadvantages of using a look-up table against an on-line resolution of the problem.
Resumo:
In the Hertz and JKR theories, parabolic assumptions for the rounded profiles of the sphere or cylinder are adopted under the condition that the contact radius (width) should be very small compared to the radius of the sphere or cylinder. However, a large contact radius (width) is often found in experiments even under a zero external loading. We aim at extending the plane strain JKR theory to the case with a large contact width. The relation between the external loading and the contact width is given. Solutions for the Hertz, JKR and rounded-profile cases are compared and analyzed. It is found that when the ratio of a/R is approximately larger than about 0.4, the parabolic assumptions in the Hertz and JKR theories are no longer valid and the exact rounded profile function should be used.
Resumo:
Proximate composition and nutritional characteristics of the two fermented fish products Hentak and Ngari of Manipur (India) were evaluated. Percentage of moisture, protein, lipid and ash contents in Hentak and Ngari were respectively: 36.30 versus 36.03; 33.33 versus 38.38; 13.60 versus 13.34 and 11.43 versus 5.49. Digestibility values in feeding trials in laboratory rats for 28 days were 82.37% for Hentak 89.46% for Ngari and that of Casein was 92.69%. The biological value, food conversion ratio and protein efficiency ratio (PER) of Hentak were 96.94, 4.83 and 1.8 respectively and that of Ngari were 97.83, 3.17 and 1.8 respectively. The α amino nitrogen of Hentak and Ngari in Pepsin + Trypsin phase were 28.40 and 28.92 respectively. The TBA number, peroxide value and TVBN were within the acceptable limits.
Resumo:
Many types of oceanic physical phenomena have a wide range in both space and time. In general, simplified models, such as shallow water model, are used to describe these oceanic motions. The shallow water equations are widely applied in various oceanic and atmospheric extents. By using the two-layer shallow water equations, the stratification effects can be considered too. In this research, the sixth-order combined compact method is investigated and numerically implemented as a high-order method to solve the two-layer shallow water equations. The second-order centered, fourth-order compact and sixth-order super compact finite difference methods are also used to spatial differencing of the equations. The first part of the present work is devoted to accuracy assessment of the sixth-order super compact finite difference method (SCFDM) and the sixth-order combined compact finite difference method (CCFDM) for spatial differencing of the linearized two-layer shallow water equations on the Arakawa's A-E and Randall's Z numerical grids. Two general discrete dispersion relations on different numerical grids, for inertia-gravity and Rossby waves, are derived. These general relations can be used for evaluation of the performance of any desired numerical scheme. For both inertia-gravity and Rossby waves, minimum error generally occurs on Z grid using either the sixth-order SCFDM or CCFDM methods. For the Randall's Z grid, the sixth-order CCFDM exhibits a substantial improvement , for the frequency of the barotropic and baroclinic modes of the linear inertia-gravity waves of the two layer shallow water model, over the sixth-order SCFDM. For the Rossby waves, the sixth-order SCFDM shows improvement, for the barotropic and baroclinic modes, over the sixth-order CCFDM method except on Arakawa's C grid. In the second part of the present work, the sixth-order CCFDM method is used to solve the one-layer and two-layer shallow water equations in their nonlinear form. In one-layer model with periodic boundaries, the performance of the methods for mass conservation is compared. The results show high accuracy of the sixth-order CCFDM method to simulate a complex flow field. Furthermore, to evaluate the performance of the method in a non-periodic domain the sixth-order CCFDM is applied to spatial differencing of vorticity-divergence-mass representation of one-layer shallow water equations to solve a wind-driven current problem with no-slip boundary conditions. The results show good agreement with published works. Finally, the performance of different schemes for spatial differencing of two-layer shallow water equations on Z grid with periodic boundaries is investigated. Results illustrate the high accuracy of combined compact method.
Resumo:
The circular photogalvanic effect (CPGE) of the two-dimensional electron gas (2DEG) in Al0.25Ga0.75N/GaN heterostructures induced by infrared radiation has been investigated under uniaxial strain. The observed photocurrent consists of the superposition of the CPGE and the linear photogalvanic effect currents, both of which are up to 10(-2) nA. The amplitude of the CPGE current increases linearly with additional strain and is enhanced by 18.6% with a strain of 2.2x10(-3). Based on the experimental results, the contribution of bulk-inversion asymmetry (BIA) and structure-inversion asymmetry (SIA) spin splitting of the 2DEG to the CPGE current in the heterostructures is separated, and the ratio of SIA and BIA terms is estimated to be about 13.2, indicating that the SIA is the dominant mechanism to induce the k-linear spin splitting of the subbands in the triangular quantum well at AlxGa1-xN/GaN heterointerfaces. (C) 2007 American Institute of Physics.
Resumo:
We obtained the high mobility Of mu(2K) = 1.78 x 10(6) cm(2)/V . s in Si-doped GaAs/AlGaAs two-dimensional electron gas (2DEG) structures. After the sample was illuminated by a light-emitting diode in magnetic fields up to 6 T at T = 2K, we did observe the persistent photoconductivity effect and the electron density increased obviously. The electronic properties of 2DEG have been studied by Quantum-Hall-effect and Shubnikov-de Haas (SdH) oscillation measurements. We found that the electron concentrations of two subbands increase simultaneity with the increasing total electron concentration, and the electron mobility also increases obviously after being illuminated. At the same time, we also found that the electronic quantum lifetime becomes shorter, and a theoretical explunation is given through the widths of integral quantum Hall plateaus.
Resumo:
We report on high magnetic fields (up to 40 T) cyclotron resonance, quantum Hall effect and Shubnikov-de-Hass measurements in high frequency transistors based on Si-doped GaN-AlGaN heterojunctions. A simple way of precise modelling of the cyclotron absorption in these heterojunctions is presented, We clearly establish two-dimensional electrons to be the dominant conducting carriers and determine precisely their in-plane effective mass to be 0.230 +/- 0.005 of the free electron effective mass. The increase of the effective mass with an increase of two-dimensional carrier density is observed and explained by the nonparabolicity effect. (C) 1997 American Institute of Physics.
Resumo:
A series of experiments have been performed by complete kinematics measurements to study two-proton (2p) correlated emission from the excited states of Ne-17,Ne-18 and S-28,S-29 via the Coulomb excitation by bombarding on Au-197 target. 2p and residua coincident events were picked Out under strict conditions. Visible p-p correlations were observed. It is shown that 2p can be emitted from the high-lying excited states. 2p halo may lead to 2p emission with large spectroscopy factor for the states close to or beyond the threshold.
Resumo:
The title two-dimensional coordination polymer was synthesised and characterised by X-ray diffraction analysis.