950 resultados para Management|Industrial engineering|Operations research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the epsilon(k)-global minimization of the Augmented Lagrangian with simple constraints, where epsilon(k) -> epsilon. Global convergence to an epsilon-global minimizer of the original problem is proved. The subproblems are solved using the alpha BB method. Numerical experiments are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the late seventies, Megiddo proposed a way to use an algorithm for the problem of minimizing a linear function a(0) + a(1)x(1) + ... + a(n)x(n) subject to certain constraints to solve the problem of minimizing a rational function of the form (a(0) + a(1)x(1) + ... + a(n)x(n))/(b(0) + b(1)x(1) + ... + b(n)x(n)) subject to the same set of constraints, assuming that the denominator is always positive. Using a rather strong assumption, Hashizume et al. extended Megiddo`s result to include approximation algorithms. Their assumption essentially asks for the existence of good approximation algorithms for optimization problems with possibly negative coefficients in the (linear) objective function, which is rather unusual for most combinatorial problems. In this paper, we present an alternative extension of Megiddo`s result for approximations that avoids this issue and applies to a large class of optimization problems. Specifically, we show that, if there is an alpha-approximation for the problem of minimizing a nonnegative linear function subject to constraints satisfying a certain increasing property then there is an alpha-approximation (1 1/alpha-approximation) for the problem of minimizing (maximizing) a nonnegative rational function subject to the same constraints. Our framework applies to covering problems and network design problems, among others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this note we discuss the convergence of Newton`s method for minimization. We present examples in which the Newton iterates satisfy the Wolfe conditions and the Hessian is positive definite at each step and yet the iterates converge to a non-stationary point. These examples answer a question posed by Fletcher in his 1987 book Practical methods of optimization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimization methods that employ the classical Powell-Hestenes-Rockafellar augmented Lagrangian are useful tools for solving nonlinear programming problems. Their reputation decreased in the last 10 years due to the comparative success of interior-point Newtonian algorithms, which are asymptotically faster. In this research, a combination of both approaches is evaluated. The idea is to produce a competitive method, being more robust and efficient than its `pure` counterparts for critical problems. Moreover, an additional hybrid algorithm is defined, in which the interior-point method is replaced by the Newtonian resolution of a Karush-Kuhn-Tucker (KKT) system identified by the augmented Lagrangian algorithm. The software used in this work is freely available through the Tango Project web page:http://www.ime.usp.br/similar to egbirgin/tango/.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two Augmented Lagrangian algorithms for solving KKT systems are introduced. The algorithms differ in the way in which penalty parameters are updated. Possibly infeasible accumulation points are characterized. It is proved that feasible limit points that satisfy the Constant Positive Linear Dependence constraint qualification are KKT solutions. Boundedness of the penalty parameters is proved under suitable assumptions. Numerical experiments are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we introduce a relaxed version of the constant positive linear dependence constraint qualification (CPLD) that we call RCPLD. This development is inspired by a recent generalization of the constant rank constraint qualification by Minchenko and Stakhovski that was called RCRCQ. We show that RCPLD is enough to ensure the convergence of an augmented Lagrangian algorithm and that it asserts the validity of an error bound. We also provide proofs and counter-examples that show the relations of RCRCQ and RCPLD with other known constraint qualifications. In particular, RCPLD is strictly weaker than CPLD and RCRCQ, while still stronger than Abadie's constraint qualification. We also verify that the second order necessary optimality condition holds under RCRCQ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microwave devulcanization has been studied as a method for elastomer recycling, which is based on the conversion of the reticulated and infusible structure of thermosetting rubbers in free polymeric chains able to be remolded by thermomechanical processing in recycling operations for the manufacture of other products. Elastomeric wastes are often irregularly discarded in nature, producing serious environmental damage, and their mechanical recycling is still considered a challenge. Thus, the development of alternatives for elastomer recycling is directly related to the actions of sustainable development and economic benefits to companies that pay to discard their wastes. The aim of this work is to evaluate the chemical modifications occurring in styrene butadiene rubber (SBR) after microwave devulcanization. Compounds of SBR were vulcanized in the presence of vulcanization agents and variable amounts of carbon black, and then the rubbers were milled and submitted to microwave treatment. Only the SBR with high carbon black content shows some portion of devulcanized material. However, the rubber with lower content of carbon black which was devulcanized by microwave radiation shows an increase in cross-link density. The microwave treatment also causes cross-link breaks mainly in polysulfidic bonds as well as decomposition of chemical groups containing sulfur attached to the chemical structure of SBR, while. the chemical bonds of higher energy such as monosulfidic bonds remain preserved. The improvement of the microwave method for rubber devulcanization represents a way for viable recycling of thermosetting rubbers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficult; therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: