859 resultados para Maintenance operations


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of Total Productive Maintenance (TPM) is to maximise plant and equipment effectiveness, to create a sense of ownership for operators, and promote continuous improvement through small group activities involving production, engineering and maintenance personnel. This paper describes and analyses a case study of TPM implementation at a newspaper printing house in Singapore. However, rather than adopting more conventional implementation methods such as employing consultants or through a project using external training, a unique approach was adopted based on Action Research using a spiral of cycles of planning, acting observing and reflecting. An Action Research team of company personnel was specially formed to undertake the necessary fieldwork. The team subsequently assisted with administering the resulting action plan. The main sources of maintenance and operational data were from interviews with shop floor workers, participative observation and reviews conducted with members of the team. Content analysis using appropriate statistical techniques was used to test the significance of changes in performance between the start and completion of the TPM programme. The paper identifies the characteristics associated with the Action Research method when used to implement TPM and discusses the applicability of the approach in related industries and processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a data structure which improves the average complexity of the operations of updating and a certain type of retrieving information on an array. The data structure is devised from a particular family of digraphs verifying conditions so that they represent solutions for this problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major barrier to practical optimization of pavement preservation programming has always been that for formulations where the identity of individual projects is preserved, the solution space grows exponentially with the problem size to an extent where it can become unmanageable by the traditional analytical optimization techniques within reasonable limit. This has been attributed to the problem of combinatorial explosion that is, exponential growth of the number of combinations. The relatively large number of constraints often presents in a real-life pavement preservation programming problems and the trade-off considerations required between preventive maintenance, rehabilitation and reconstruction, present yet another factor that contributes to the solution complexity. In this research study, a new integrated multi-year optimization procedure was developed to solve network level pavement preservation programming problems, through cost-effectiveness based evolutionary programming analysis, using the Shuffled Complex Evolution (SCE) algorithm.^ A case study problem was analyzed to illustrate the robustness and consistency of the SCE technique in solving network level pavement preservation problems. The output from this program is a list of maintenance and rehabilitation treatment (M&R) strategies for each identified segment of the network in each programming year, and the impact on the overall performance of the network, in terms of the performance levels of the recommended optimal M&R strategy. ^ The results show that the SCE is very efficient and consistent in the simultaneous consideration of the trade-off between various pavement preservation strategies, while preserving the identity of the individual network segments. The flexibility of the technique is also demonstrated, in the sense that, by suitably coding the problem parameters, it can be used to solve several forms of pavement management programming problems. It is recommended that for large networks, some sort of decomposition technique should be applied to aggregate sections, which exhibit similar performance characteristics into links, such that whatever M&R alternative is recommended for a link can be applied to all the sections connected to it. In this way the problem size, and hence the solution time, can be greatly reduced to a more manageable solution space. ^ The study concludes that the robust search characteristics of SCE are well suited for solving the combinatorial problems in long-term network level pavement M&R programming and provides a rich area for future research. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to design a preventive scheme using directional antennas to improve the performance of mobile ad hoc networks. In this dissertation, a novel Directionality based Preventive Link Maintenance (DPLM) Scheme is proposed to characterize the performance gain [JaY06a, JaY06b, JCY06] by extending the life of link. In order to maintain the link and take preventive action, signal strength of data packets is measured. Moreover, location information or angle of arrival information is collected during communication and saved in the table. When measured signal strength is below orientation threshold , an orientation warning is generated towards the previous hop node. Once orientation warning is received by previous hop (adjacent) node, it verifies the correctness of orientation warning with few hello pings and initiates high quality directional link (a link above the threshold) and immediately switches to it, avoiding a link break altogether. The location information is utilized to create a directional link by orienting neighboring nodes antennas towards each other. We call this operation an orientation handoff, which is similar to soft-handoff in cellular networks. ^ Signal strength is the indicating factor, which represents the health of the link and helps to predict the link failure. In other words, link breakage happens due to node movement and subsequently reducing signal strength of receiving packets. DPLM scheme helps ad hoc networks to avoid or postpone costly operation of route rediscovery in on-demand routing protocols by taking above-mentioned preventive action. ^ This dissertation advocates close but simple collaboration between the routing, medium access control and physical layers. In order to extend the link, the Dynamic Source Routing (DSR) and IEEE 802.11 MAC protocols were modified to use the ability of directional antennas to transmit over longer distance. A directional antenna module is implemented in OPNET simulator with two separate modes of operations: omnidirectional and directional. The antenna module has been incorporated in wireless node model and simulations are performed to characterize the performance improvement of mobile ad hoc networks. Extensive simulations have shown that without affecting the behavior of the routing protocol noticeably, aggregate throughput, packet delivery ratio, end-to-end delay (latency), routing overhead, number of data packets dropped, and number of path breaks are improved considerably. We have done the analysis of the results in different scenarios to evaluate that the use of directional antennas with proposed DPLM scheme has been found promising to improve the performance of mobile ad hoc networks. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Category hierarchy is an abstraction mechanism for efficiently managing large-scale resources. In an open environment, a category hierarchy will inevitably become inappropriate for managing resources that constantly change with unpredictable pattern. An inappropriate category hierarchy will mislead the management of resources. The increasing dynamicity and scale of online resources increase the requirement of automatically maintaining category hierarchy. Previous studies about category hierarchy mainly focus on either the generation of category hierarchy or the classification of resources under a pre-defined category hierarchy. The automatic maintenance of category hierarchy has been neglected. Making abstraction among categories and measuring the similarity between categories are two basic behaviours to generate a category hierarchy. Humans are good at making abstraction but limited in ability to calculate the similarities between large-scale resources. Computing models are good at calculating the similarities between large-scale resources but limited in ability to make abstraction. To take both advantages of human view and computing ability, this paper proposes a two-phase approach to automatically maintaining category hierarchy within two scales by detecting the internal pattern change of categories. The global phase clusters resources to generate a reference category hierarchy and gets similarity between categories to detect inappropriate categories in the initial category hierarchy. The accuracy of the clustering approaches in generating category hierarchy determines the rationality of the global maintenance. The local phase detects topical changes and then adjusts inappropriate categories with three local operations. The global phase can quickly target inappropriate categories top-down and carry out cross-branch adjustment, which can also accelerate the local-phase adjustments. The local phase detects and adjusts the local-range inappropriate categories that are not adjusted in the global phase. By incorporating the two complementary phase adjustments, the approach can significantly improve the topical cohesion and accuracy of category hierarchy. A new measure is proposed for evaluating category hierarchy considering not only the balance of the hierarchical structure but also the accuracy of classification. Experiments show that the proposed approach is feasible and effective to adjust inappropriate category hierarchy. The proposed approach can be used to maintain the category hierarchy for managing various resources in dynamic application environment. It also provides an approach to specialize the current online category hierarchy to organize resources with more specific categories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The U.S. railroad companies spend billions of dollars every year on railroad track maintenance in order to ensure safety and operational efficiency of their railroad networks. Besides maintenance costs, other costs such as train accident costs, train and shipment delay costs and rolling stock maintenance costs are also closely related to track maintenance activities. Optimizing the track maintenance process on the extensive railroad networks is a very complex problem with major cost implications. Currently, the decision making process for track maintenance planning is largely manual and primarily relies on the knowledge and judgment of experts. There is considerable potential to improve the process by using operations research techniques to develop solutions to the optimization problems on track maintenance. In this dissertation study, we propose a range of mathematical models and solution algorithms for three network-level scheduling problems on track maintenance: track inspection scheduling problem (TISP), production team scheduling problem (PTSP) and job-to-project clustering problem (JTPCP). TISP involves a set of inspection teams which travel over the railroad network to identify track defects. It is a large-scale routing and scheduling problem where thousands of tasks are to be scheduled subject to many difficult side constraints such as periodicity constraints and discrete working time constraints. A vehicle routing problem formulation was proposed for TISP, and a customized heuristic algorithm was developed to solve the model. The algorithm iteratively applies a constructive heuristic and a local search algorithm in an incremental scheduling horizon framework. The proposed model and algorithm have been adopted by a Class I railroad in its decision making process. Real-world case studies show the proposed approach outperforms the manual approach in short-term scheduling and can be used to conduct long-term what-if analyses to yield managerial insights. PTSP schedules capital track maintenance projects, which are the largest track maintenance activities and account for the majority of railroad capital spending. A time-space network model was proposed to formulate PTSP. More than ten types of side constraints were considered in the model, including very complex constraints such as mutual exclusion constraints and consecution constraints. A multiple neighborhood search algorithm, including a decomposition and restriction search and a block-interchange search, was developed to solve the model. Various performance enhancement techniques, such as data reduction, augmented cost function and subproblem prioritization, were developed to improve the algorithm. The proposed approach has been adopted by a Class I railroad for two years. Our numerical results show the model solutions are able to satisfy all hard constraints and most soft constraints. Compared with the existing manual procedure, the proposed approach is able to bring significant cost savings and operational efficiency improvement. JTPCP is an intermediate problem between TISP and PTSP. It focuses on clustering thousands of capital track maintenance jobs (based on the defects identified in track inspection) into projects so that the projects can be scheduled in PTSP. A vehicle routing problem based model and a multiple-step heuristic algorithm were developed to solve this problem. Various side constraints such as mutual exclusion constraints and rounding constraints were considered. The proposed approach has been applied in practice and has shown good performance in both solution quality and efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part 2: Behaviour and Coordination

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The project goal was to determine plant operations and maintenance worker’s level of exposure to mercury during routine and non-routine (i.e. turnarounds and inspections) maintenance events in eight gas processing plants. The project team prepared sampling and analysis plans designed to each plant’s process design and scheduled maintenance events. Occupational exposure sampling and monitoring efforts were focused on the measurement of mercury vapor concentration in worker breathing zone air during specific maintenance events including: pipe scrapping, process filter replacement, and process vessel inspection. Similar exposure groups were identified and worker breathing zone and ambient air samples were collected and analyzed for total mercury. Occupational exposure measurement techniques included portable field monitoring instruments, standard passive and active monitoring methods and an emerging passive absorption technology. Process sampling campaigns were focused on inlet gas streams, mercury removal unit outlets, treated gas, acid gas and sales gas. The results were used to identify process areas with increased potential for mercury exposure during maintenance events. Sampling methods used for the determination of total mercury in gas phase streams were based on the USEPA Methods 30B and EPA 1631 and EPA 1669. The results of four six-week long sampling campaigns have been evaluated and some conclusions and recommendations have been made. The author’s role in this project included the direction of all field phases of the project and the development and implementation of the sampling strategy. Additionally, the author participated in the development and implementation of the Quality Assurance Project Plan, Data Quality Objectives, and Similar Exposure Groups identification. All field generated data was reviewed by the author along with laboratory reports in order to generate conclusions and recommendations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time for conducting Preventive Maintenance (PM) on an asset is often determined using a predefined alarm limit based on trends of a hazard function. In this paper, the authors propose using both hazard and reliability functions to improve the accuracy of the prediction particularly when the failure characteristic of the asset whole life is modelled using different failure distributions for the different stages of the life of the asset. The proposed method is validated using simulations and case studies.