990 resultados para Job shop


Relevância:

60.00% 60.00%

Publicador:

Resumo:

研究了在敏捷制造环境下制造车间生产过程的动态调度问题。针对敏捷化调度的特殊要求 ,提出了综合运用多代理机制与规则调度实现敏捷化制造车间生产过程动态调度的方法 ,建立了基于多代理生产组织和运行模式的生产过程动态调度系统框架结构 ,研究了在多代理结构的基础上实现规则调度的方法 ,创建了适应实际生产环境的代理的模型结构 ,并以一类敏捷加工车间动态调度的仿真研究说明所提出方法的思路和可行性。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

提出解决具有开、完工期限制的约束Job-shop生产调度问题的一种神经网络方法.该方法通过约束神经网络,描述各种加工约束条件,并对不满足约束的开工时间进行相应调节,得到可行调度方案;然后由梯度搜索算法优化可行调度方案,直至得到最终优化可行调度解.理论分析、仿真实验表明了方法的有效性。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

柔性是柔性制造系统(FMS)的一个基本优点,但这一基本优点却往往被人们所忽视,许多现在运行的FMS不是缺乏柔性,就是没能充分利用可获得的柔性来提高生产效率柔性制造系统的负荷分配和路径规划问题正是这种柔性的一个主要方面.然而,路径规划决策却往往被忽视.其中一个主要原因就是人们仍不能从传统的生产管理概念中解放出来.本文在明确概念区分的基础上,提出了一种柔性制造系统的负荷分配和路径规划的线性规划模型,其主要特点是将负荷分配和路径规划问题有机地结合起来,并通过仿真实验验证并分析了此方法对FMS性能上的影响。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is concerned with the application of an automated hybrid approach in addressing the university timetabling problem. The approach described is based on the nature-inspired artificial bee colony (ABC) algorithm. An ABC algorithm is a biologically-inspired optimization approach, which has been widely implemented in solving a range of optimization problems in recent years such as job shop scheduling and machine timetabling problems. Although the approach has proven to be robust across a range of problems, it is acknowledged within the literature that there currently exist a number of inefficiencies regarding the exploration and exploitation abilities. These inefficiencies can often lead to a slow convergence speed within the search process. Hence, this paper introduces a variant of the algorithm which utilizes a global best model inspired from particle swarm optimization to enhance the global exploration ability while hybridizing with the great deluge (GD) algorithm in order to improve the local exploitation ability. Using this approach, an effective balance between exploration and exploitation is attained. In addition, a traditional local search approach is incorporated within the GD algorithm with the aim of further enhancing the performance of the overall hybrid method. To evaluate the performance of the proposed approach, two diverse university timetabling datasets are investigated, i.e., Carter's examination timetabling and Socha course timetabling datasets. It should be noted that both problems have differing complexity and different solution landscapes. Experimental results demonstrate that the proposed method is capable of producing high quality solutions across both these benchmark problems, showing a good degree of generality in the approach. Moreover, the proposed method produces best results on some instances as compared with other approaches presented in the literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese dout., Matemática, Investigação Operacional, Universidade do Algarve, 2009

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La computación evolutiva y muy especialmente los algoritmos genéticos son cada vez más empleados en las organizaciones para resolver sus problemas de gestión y toma de decisiones (Apoteker & Barthelemy, 2000). La literatura al respecto es creciente y algunos estados del arte han sido publicados. A pesar de esto, no hay un trabajo explícito que evalúe de forma sistemática el uso de los algoritmos genéticos en problemas específicos de los negocios internacionales (ejemplos de ello son la logística internacional, el comercio internacional, el mercadeo internacional, las finanzas internacionales o estrategia internacional). El propósito de este trabajo de grado es, por lo tanto, realizar un estado situacional de las aplicaciones de los algoritmos genéticos en los negocios internacionales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a discrete state transition algorithm is introduced to solve a multiobjective single machine job shop scheduling problem. In the proposed approach, a non-dominated sort technique is used to select the best from a candidate state set, and a Pareto archived strategy is adopted to keep all the non-dominated solutions. Compared with the enumeration and other heuristics, experimental results have demonstrated the effectiveness of the multiobjective state transition algorithm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Il presente lavoro ha come obiettivo la definizione e la misura della complessità tecnologica, al fine di costruire strumenti a supporto di tutti gli operatori che si occupano dello sviluppo e della fabbricazione di un prodotto industriale, quali progettisti di prodotto e responsabili di produzione. La ricerca è stata sviluppata attraverso le fasi di seguito descritte. Analisi dello stato dell’arte su definizioni e misure della complessità in ambito industriale attraverso l’individuazione e studio di oltre un centinaio di pubblicazioni al riguardo. Classificazione dei metodi proposti in letteratura per la misura della complessità in cinque categorie e analisi critica dei punti di forza e di debolezza dei differenti metodi, ai fini di orientare la elaborazione di un nuovo metodo. Sono stati inoltre analizzati i principali metodi di Intelligenza Artificiali quali potenziali strumenti di calcolo della complessità. Indagine su tematiche correlate alla complessità quali indicatori, trasferimento tecnologico e innovazione. La complessità viene misurata in termini di un indice che appartiene alla categoria degli indicatori, utilizzati in molti ambiti industriali, in particolare quello della misura delle prestazioni di produzione. In particolare si è approfondito significato e utilizzo dell’OEE (Overall Equipment Effectiveness), particolarmente diffuso nelle piccole medie imprese emilianoromagnole e in generale dalle aziende che utilizzano un sistema produttivo di tipo job-shop. È stato implementato un efficace sistema di calcolo dell’OEE presso una azienda meccanica locale. L’indice di complessità trova una delle sue più interessanti applicazioni nelle operazioni di trasferimento tecnologico. Introdurre un’innovazione significa in genere aumentare la complessità del sistema, quindi i due concetti sono connessi. Sono stati esaminati diversi casi aziendali di trasferimento di tecnologia e di misura delle prestazioni produttive, evidenziando legami e influenza della complessità tecnologica sulle scelte delle imprese. Elaborazione di un nuovo metodo di calcolo di un indice di complessità tecnologica di prodotto, a partire dalla metodologia ibrida basata su modello entropico proposta dai Prof. ElMaraghy e Urbanic nel 2003. L’attenzione è stata focalizzata sulla sostituzione nella formula originale a valori determinati tramite interviste agli operatori e pertanto soggettivi, valori oggettivi. Verifica sperimentale della validità della nuova metodologia attraverso l’applicazione della formula ad alcuni componenti meccanici grazie alla collaborazione di un’azienda meccanica manifatturiera. Considerazioni e conclusioni sui risultati ottenuti, sulla metodologia proposta e sulle applicazioni del nuovo indice, delineando gli obiettivi del proseguo della ricerca. In tutto il lavoro si sono evidenziate connessioni e convergenze delle diverse fonti e individuati in diversi ambiti concetti e teorie che forniscono importanti spunti e considerazioni sul tema della complessità. Particolare attenzione è stata dedicata all’intera bibliografia dei Prof. ElMaraghy al momento riconosciuti a livello internazionale come i più autorevoli studiosi del tema della complessità in ambito industriale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los problemas de programación de tareas son muy importantes en el mundo actual. Se puede decir que se presentan en todos los fundamentos de la industria moderna, de ahí la importancia de que estos sean óptimos, de forma que se puedan ahorrar recursos que estén asociados al problema. La programación adecuada de trabajos en procesos de manufactura, constituye un importante problema que se plantea dentro de la producción en muchas empresas. El orden en que estos son procesados, no resulta indiferente, sino que determinará algún parámetro de interés, cuyos valores convendrá optimizar en la medida de lo posible. Así podrá verse afectado el coste total de ejecución de los trabajos, el tiempo necesario para concluirlos o el stock de productos en curso que será generado. Esto conduce de forma directa al problema de determinar cuál será el orden más adecuado para llevar a cabo los trabajos con vista a optimizar algunos de los anteriores parámetros u otros similares. Debido a las limitaciones de las técnicas de optimización convencionales, en la presente tesis se presenta una metaheurística basada en un Algoritmo Genético Simple (Simple Genetic Algorithm, SGA), para resolver problemas de programación de tipo flujo general (Job Shop Scheduling, JSS) y flujo regular (Flow Shop Scheduling, FSS), que están presentes en un taller con tecnología de mecanizado con el objetivo de optimizar varias medidas de desempeño en un plan de trabajo. La aportación principal de esta tesis, es un modelo matemático para medir el consumo de energía, como criterio para la optimización, de las máquinas que intervienen en la ejecución de un plan de trabajo. Se propone además, un método para mejorar el rendimiento en la búsqueda de las soluciones encontradas, por parte del Algoritmo Genético Simple, basado en el aprovechamiento del tiempo ocioso. ABSTRACT The scheduling problems are very important in today's world. It can be said to be present in all the basics of modern industry, hence the importance that these are optimal, so that they can save resources that are associated with the problem. The appropriate programming jobs in manufacturing processes is an important problem that arises in production in many companies. The order in which they are processed, it is immaterial, but shall determine a parameter of interest, whose values agree optimize the possible. This may be affected the total cost of execution of work, the time needed to complete them or the stock of work in progress that will be generated. This leads directly to the problem of determining what the most appropriate order to carry out the work in order to maximize some of the above parameters or other similar. Due to the limitations of conventional optimization techniques, in this work present a metaheuristic based on a Simple Genetic Algorithm (Simple Genetic Algorithm, SGA) to solve programming problems overall flow rate (Job Shop Scheduling, JSS) and regular flow (Flow Shop Scheduling, FSS), which are present in a workshop with machining technology in order to optimize various performance measures in a plan. The main contribution of this thesis is a mathematical model to measure the energy consumption as a criterion for the optimization of the machines involved in the implementation of a work plan. It also proposes a method to improve performance in finding the solutions, by the simple genetic algorithm, based on the use of idle time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE The decision-making process plays a key role in organizations. Every decision-making process produces a final choice that may or may not prompt action. Recurrently, decision makers find themselves in the dichotomous question of following a traditional sequence decision-making process where the output of a decision is used as the input of the next stage of the decision, or following a joint decision-making approach where several decisions are taken simultaneously. The implication of the decision-making process will impact different players of the organization. The choice of the decision- making approach becomes difficult to find, even with the current literature and practitioners’ knowledge. The pursuit of better ways for making decisions has been a common goal for academics and practitioners. Management scientists use different techniques and approaches to improve different types of decisions. The purpose of this decision is to use the available resources as well as possible (data and techniques) to achieve the objectives of the organization. The developing and applying of models and concepts may be helpful to solve managerial problems faced every day in different companies. As a result of this research different decision models are presented to contribute to the body of knowledge of management science. The first models are focused on the manufacturing industry and the second part of the models on the health care industry. Despite these models being case specific, they serve the purpose of exemplifying that different approaches to the problems and could provide interesting results. Unfortunately, there is no universal recipe that could be applied to all the problems. Furthermore, the same model could deliver good results with certain data and bad results for other data. A framework to analyse the data before selecting the model to be used is presented and tested in the models developed to exemplify the ideas. METHODOLOGY As the first step of the research a systematic literature review on the joint decision is presented, as are the different opinions and suggestions of different scholars. For the next stage of the thesis, the decision-making process of more than 50 companies was analysed in companies from different sectors in the production planning area at the Job Shop level. The data was obtained using surveys and face-to-face interviews. The following part of the research into the decision-making process was held in two application fields that are highly relevant for our society; manufacturing and health care. The first step was to study the interactions and develop a mathematical model for the replenishment of the car assembly where the problem of “Vehicle routing problem and Inventory” were combined. The next step was to add the scheduling or car production (car sequencing) decision and use some metaheuristics such as ant colony and genetic algorithms to measure if the behaviour is kept up with different case size problems. A similar approach is presented in a production of semiconductors and aviation parts, where a hoist has to change from one station to another to deal with the work, and a jobs schedule has to be done. However, for this problem simulation was used for experimentation. In parallel, the scheduling of operating rooms was studied. Surgeries were allocated to surgeons and the scheduling of operating rooms was analysed. The first part of the research was done in a Teaching hospital, and for the second part the interaction of uncertainty was added. Once the previous problem had been analysed a general framework to characterize the instance was built. In the final chapter a general conclusion is presented. FINDINGS AND PRACTICAL IMPLICATIONS The first part of the contributions is an update of the decision-making literature review. Also an analysis of the possible savings resulting from a change in the decision process is made. Then, the results of the survey, which present a lack of consistency between what the managers believe and the reality of the integration of their decisions. In the next stage of the thesis, a contribution to the body of knowledge of the operation research, with the joint solution of the replenishment, sequencing and inventory problem in the assembly line is made, together with a parallel work with the operating rooms scheduling where different solutions approaches are presented. In addition to the contribution of the solving methods, with the use of different techniques, the main contribution is the framework that is proposed to pre-evaluate the problem before thinking of the techniques to solve it. However, there is no straightforward answer as to whether it is better to have joint or sequential solutions. Following the proposed framework with the evaluation of factors such as the flexibility of the answer, the number of actors, and the tightness of the data, give us important hints as to the most suitable direction to take to tackle the problem. RESEARCH LIMITATIONS AND AVENUES FOR FUTURE RESEARCH In the first part of the work it was really complicated to calculate the possible savings of different projects, since in many papers these quantities are not reported or the impact is based on non-quantifiable benefits. The other issue is the confidentiality of many projects where the data cannot be presented. For the car assembly line problem more computational power would allow us to solve bigger instances. For the operation research problem there was a lack of historical data to perform a parallel analysis in the teaching hospital. In order to keep testing the decision framework it is necessary to keep applying more case studies in order to generalize the results and make them more evident and less ambiguous. The health care field offers great opportunities since despite the recent awareness of the need to improve the decision-making process there are many opportunities to improve. Another big difference with the automotive industry is that the last improvements are not spread among all the actors. Therefore, in the future this research will focus more on the collaboration between academia and the health care sector.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis describes an investigation by the author into the spares operation of compare BroomWade Ltd. Whilst the complete system, including the warehousing and distribution functions, was investigated, the thesis concentrates on the provisioning aspect of the spares supply problem. Analysis of the historical data showed the presence of significant fluctuations in all the measures of system performance. Two Industrial Dynamics simulation models were developed to study this phenomena. The models showed that any fluctuation in end customer demand would be amplified as it passed through the distributor and warehouse stock control systems. The evidence from the historical data available supported this view of the system's operation. The models were utilised to determine which parts of the total system could be expected to exert a critical influence on its performance. The lead time parameters of the supply sector were found to be critical and further study showed that the manner in which the lead time changed with work in progress levels was also an important factor. The problem therefore resolved into the design of a spares manufacturing system. Which exhibited the appropriate dynamic performance characteristics. The gross level of entity presentation, inherent in the Industrial Dynamics methodology, was found to limit the value of these models in the development of detail design proposals. Accordingly, an interacting job shop simulation package was developed to allow detailed evaluation of organisational factors on the performance characteristics of a manufacturing system. The package was used to develop a design for a pilot spares production unit. The need for a manufacturing system to perform successfully under conditions of fluctuating demand is not limited to the spares field. Thus, although the spares exercise provides an example of the approach, the concepts and techniques developed can be considered to have broad application throughout batch manufacturing industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research is motivated by the need for considering lot sizing while accepting customer orders in a make-to-order (MTO) environment, in which each customer order must be delivered by its due date. Job shop is the typical operation model used in an MTO operation, where the production planner must make three concurrent decisions; they are order selection, lot size, and job schedule. These decisions are usually treated separately in the literature and are mostly led to heuristic solutions. The first phase of the study is focused on a formal definition of the problem. Mathematical programming techniques are applied to modeling this problem in terms of its objective, decision variables, and constraints. A commercial solver, CPLEX is applied to solve the resulting mixed-integer linear programming model with small instances to validate the mathematical formulation. The computational result shows it is not practical for solving problems of industrial size, using a commercial solver. The second phase of this study is focused on development of an effective solution approach to this problem of large scale. The proposed solution approach is an iterative process involving three sequential decision steps of order selection, lot sizing, and lot scheduling. A range of simple sequencing rules are identified for each of the three subproblems. Using computer simulation as the tool, an experiment is designed to evaluate their performance against a set of system parameters. For order selection, the proposed weighted most profit rule performs the best. The shifting bottleneck and the earliest operation finish time both are the best scheduling rules. For lot sizing, the proposed minimum cost increase heuristic, based on the Dixon-Silver method performs the best, when the demand-to-capacity ratio at the bottleneck machine is high. The proposed minimum cost heuristic, based on the Wagner-Whitin algorithm is the best lot-sizing heuristic for shops of a low demand-to-capacity ratio. The proposed heuristic is applied to an industrial case to further evaluate its performance. The result shows it can improve an average of total profit by 16.62%. This research contributes to the production planning research community with a complete mathematical definition of the problem and an effective solution approach to solving the problem of industry scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. ^ For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver.^ The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. ^ The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver. The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.