923 resultados para Indirect tensile strength test
Resumo:
Diplomityössä on haettu tietoa lasikuitupinnoitteiden ja vinyyliesterihartsien yhteensopivuudesta ja sen testaamisesta. Lujitemuovikomposiitissa hartsi sitoo materiaalit yhteen ja antaa rakenteelle kemiallisen kestävyyden, sitkeyden ja välittää kuormitukset kuitujen kannettaviksi. Vaadittavan lujuuden rakenteelle antaa lasikuitu. Se päällystetään valmistusvaiheessa pinnoiteaineella, sizingilla. Sillä on ratkaiseva merkitys hartsin ja lasikuidun väliin syntyvän rajapinnan muodostumisessa kovettumisprosessin aikana. Käytännössä rajapinnan toimivuutta ja materiaalien yhteensopivuutta tutkitaan makromekaanisilla lujuustesteillä. Menetelmät perustuvat rajapinnan leikkaus¬lujuuden määrittämiseen, mutta myös murtumamekanismeihin perustuvia testi¬menetelmiä käytetään. Mikrotason menetelmät, jotka perustuvat yksittäisen kuidun ja käytetyn hartsin välisen adheesion mittaamiseen ovat yleistyneet, mutta niistä saatujen tulosten ei ole vielä todettu riittävästi korreloivan makro¬mekaanisten lujuustestien kanssa. Työssä tutkittiin kahta eri makromekaanista testimenetelmää. Testeissä havaittiin eroja valittujen lasikuitupinnoitteiden ja vinyyliesterihartsien välillä. Hauras hartsi oli herkempi lasikuitupinnoitteen kemialle. Kun yhteensopivuus vinyyli-esterihartsin ja lasikuitupinnoitteen välillä oli huono, saatiin sekä poikittaisessa vetolujuustestissä että Mode I murtumissitkeystestissä heikko tulos. Pyyhkäisy¬elektronimikroskoopilla suoritettu mikrotason analyysi murtopinnasta vahvisti saatuja tuloksia ja se osoittautui toimivaksi menetelmäksi kuvantamaan ilmiöitä, jotka vaikuttavat yhteensopivuuteen vinyyliesterihartsin ja pinnoitetun lasikuidun välillä.
Resumo:
Ensaios de tração uniaxiais foram empregados para deformar aços inoxidáveis austeníticos do tipo 304, em diferentes temperaturas abaixo da ambiente (de 77 K a 300 K). A relação entre a estabilidade da austenita e o encruamento, em função da temperatura de teste, é discutida quanto à transformação martensítica induzida por deformação e ao deslizamento de discordâncias na austenita. em curvas tensão-deformação que assumem a equação de Ludwik sigma = sigmao + képsilonn, na qual sigma é a tensão verdadeira e e a elongação plástica verdadeira, um modo conveniente para analisar o encruamento é por meio do diagrama log dsigma / dépsilon versus log épsilon. O aspecto significativo é a variação da taxa de encruamento dsigma / dépsilon com a elongação plástica verdadeira nas diferentes temperaturas. As mudanças no comportamento do encruamento motivando até três estágios de deformação são associadas a diferentes processos microestruturais. A transformação martensítica pode ser considerada como um processo de deformação que compete com o processo usual de deslizamento. A investigação desses estágios, na região plástica, produz uma referência qualitativa de como diferentes fatores, tais como o grau de deformação, temperatura e composição química da austenita, afetam a transformação austenita-martensita.
Resumo:
OBJETIVO: Avaliar a ligação entre músculos oculares extrínsecos e esferas de polietileno poroso usando um bioadesivo. MÉTODOS: Estudo experimental envolvendo 8 coelhos albinos submetidos a enucleação do olho direto com colocação de implante esférico de polietileno poroso de 12 mm de diâmetro unido aos músculos oculares extrínsecos por meio do bioadesivo 2-octil-cianoacrilato. Noventa dias após a cirurgia os animais foram sacrificados e o conteúdo orbitário removido. em 4 animais foi realizado estudo biomecânico, avaliando-se a força de ruptura entre a musculatura e a esfera (grupo implante) e entre a musculatura e a esclera nos olhos contralaterais (grupo controle). Nos outros 4 animais foi realizada análise histológica. RESULTADO: A avaliação biomecânica revelou que a força de ruptura entre esfera-músculo e esclera-músculo foram semelhantes quando se usa o adesivo de cianoacrilato. O exame histológico mostrou reação fibrovascular no local da adesão entre a musculatura e a esfera, sem efeitos deletérios aos tecidos. Ao redor dos implantes foi possível observar pseudocápsula e no interior, neovasos e tecido fibrovascular preenchendo os espaços entre os grânulos do polietileno. CONCLUSÃO: O adesivo 2-octil-cianoacrilato mantém boa força de adesão na união entre os músculos e as esferas de polietileno poroso, com redução do tempo cirúrgico e sem efeitos deletérios aos tecidos orbitais. Desta forma, deve-se considerar o uso do bioadesivo na reconstrução da cavidade anoftálmica.
Resumo:
Objectives: To investigate the adhesive potential of novel zirconia primers and universal adhesives to surface-treated zirconia substrates.Methods: Zirconia bars were manufactured (3.0 mm x 3.0 mm x 9.0 mm) and treated as follows: no treatment (C); air abrasion with 35 mu m alumina particles (S); air abrasion with 30 mu m silica particles using one of two systems (Rocatec or SilJet) and; glazing (G). Groups C and S were subsequentially treated with one of the following primers or adhesives: ZP (Z-Prime Plus), AZ (AZ Primer); MP (Monobond Plus); SU (ScotchBond Universal) and; EA (an Experimental Adhesive). Groups Rocatec and SilJet were silanized prior to cementation. Samples form group G were further etched and silanized. Bars were cemented (Multilink) onto bars of a silicate-based ceramic (3.0 mm x 3.0 mm x 9.0 mm) at 90 degrees angle, thermocycled (2.500 cycles, 5-55 degrees C, 30 s dwell time), and tested in tensile strength test. Failure analysis was performed on fractured specimens to measure the bonding area and crack origin.Results: Specimens from group C did not survive thermocycling, while CMP, CSU and CEA groups survived thermocycling but rendered low values of bond strength. All primers presented a better bond performance after air abrasion with Al2O3 particles. SilJet was similar to Rocatec, both presenting the best bond strength results, along with SMP, SSU and CEA. G promoted intermediate bond strength values. Failure mode was predominately adhesive on zirconia surface combined to cohesive of the luting agent.Conclusions: Universal adhesives (MP, SU, EA) may be a considerable alternative for bonding to zirconia, but air abrasion is still previously required. Air abrasion with silica particles followed by silane application also presented high bond strength values. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The multiphase steels are gaining increasing attention in scientific studies because of the different mechanical and microstructural properties that the material can achieve under different thermomechanical and heat treatments that can be submitted. In the present study, it was made a microstructural study thru the triple attack technic associated with optical microscopy and mechanical characterization of medium carbon AISI 4350 steel thru a tensile strength test, subjected to three routes of heat treatment: annealing, quenching and tempering and isothermal annealing. It was verified the predominance of ferrite-perlite constituent in the specimen annealed, martensitic in the quenched and tempered specimen and bainitic in the annealed isothermally specimen. The annealed material showed a higher ductility, while the hardened and tempered specimen showed the highest hardness and ultimately the bainitic specimen showed a combination of the two abovementioned mechanical properties. Thus, we proved that the multiphase steel SAE 4350 can be a versatile material with great potential for various industrial applications
Resumo:
The multiphase steels are gaining increasing attention in scientific studies because of the different mechanical and microstructural properties that the material can achieve under different thermomechanical and heat treatments that can be submitted. In the present study, it was made a microstructural study thru the triple attack technic associated with optical microscopy and mechanical characterization of medium carbon AISI 4350 steel thru a tensile strength test, subjected to three routes of heat treatment: annealing, quenching and tempering and isothermal annealing. It was verified the predominance of ferrite-perlite constituent in the specimen annealed, martensitic in the quenched and tempered specimen and bainitic in the annealed isothermally specimen. The annealed material showed a higher ductility, while the hardened and tempered specimen showed the highest hardness and ultimately the bainitic specimen showed a combination of the two abovementioned mechanical properties. Thus, we proved that the multiphase steel SAE 4350 can be a versatile material with great potential for various industrial applications
Resumo:
The use of recycled materials in asphalt mixtures such as reclaimed asphalt pavements (RAP) have become widely accepted as a replacement for virgin asphalt binder or virgin aggregates. In this study, the RAP content was 30%, and CR additives were blended with the soft unmodified binder by using dry processes. The objective of this study was to investigate and evaluate the engineering properties of dry method application of crumb rubber influences on reclaimed asphalt pavement (RAP) mixtures. To evaluate the effect of rubber-bitumen interaction on the mixture’s mechanical properties, a laboratory investigation has been conducted on a range of dense graded and 30% RAP by dry process crumb rubber modified (CRM) asphalt mixtures containing 0% (control), 1% crumb rubber by the total aggregate mass. The experimental program in this research include the binder extraction for estimating the amount of aged binder in the both fine and coarse RAP material. Before extracting the binder the RAP sieve analysis, have been done to provide the Black grading curve. In continue after the binder extraction the material sieved again to providing the white curve. The comparison of Black and White curve indicated that there is a remarkable difference between the aggregate grading even for the fine RAP. The experimental program was continued by fabricating 12 specimens in different 4 types of mixtures. For the first group no RAP, no rejuvenator and no crumb rubber were used. For the second group 30% of virgin aggregates substituted by RAP material and the third group was similar to the second group just with 0.01% rejuvenator. the forth group was the group, which in that the specimens contain RAP, rejuvenator and crumb rubber. Finally the specimens were tested for Indirect tensile strength. The results indicated that the addition of crumb rubber increased the optimum amount of binder in the mixture with 30% RAP.
Resumo:
A test protocol and a data analysis method are developed in this paper on the basis of linear viscoelastic theory to characterize the anisotropic viscoelastic properties of undamaged asphalt mixtures. The test protocol includes three nondestructive tests: (1) uniaxial compressive creep test, (2) indirect tensile creep test, and (3) the uniaxial tensile creep test. All three tests are conducted on asphalt mixture specimens at three temperatures (10, 20, and 30°C) to determine the tensile and compressive properties at each temperature and then to construct the master curve of each property. The determined properties include magnitude and phase angle of the compressive complex modulus in the vertical direction, magnitude and phase angle of the tensile complex modulus, and the magnitude and phase angle of the compressive complex modulus in the horizontal plane. The test results indicate that all tested asphalt mixtures have significantly different tensile properties from compressive properties. The peak value of the master curve of the tensile complex modulus phase angle is within a range from 65 to 85°, whereas the peak value of the compressive moduli phase angle in both directions ranges from 35 to 55°. In addition, the undamaged asphalt mixtures exhibit distinctively anisotropic properties in compression. The magnitude of the compressive modulus in the vertical direction is approximately 1.2 to ̃2 times of the magnitude of the compressive modulus in the horizontal plane. Dynamic modulus tests are performed to verify the results of the proposed test protocol. The test results from the proposed test protocol match well with those from the dynamic tests. © 2012 American Society of Civil Engineers.
Resumo:
The objective of this study was to fundamentally characterize the laboratory performance of traditional hot mix asphalt (HMA) mixtures incorporating high RAP content and waste tire crumb rubber through their fundamental engineering properties. The nominal maximum aggregates size was chosen for this research was 12mm (considering the limitation of aggregate size for surface layer) and both coarse and fine aggregates are commonly used in Italy that were examined and analyzed in this study. On the other hand, the RAP plays an important role in reducing production costs and enhancing the environmentally sustainable pavements instead of using virgin materials in HMA. Particularly, this study has aimed to use 30% of RAP content (25% fine aggregate RAP and 5% coarse aggregate RAP) and 1% of CR additives by the total weight of aggregates for mix design. The mixture of aggregates, RAP and CR were blended with different amount of unmodified binder through dry processes. Generally, the main purposes of this study were investigating on capability of using RAP and CR in dense graded HMA and comparing the performance of rejuvenator in RAP with CR. In addition, based on the engineering analyses during the study, we were able compare the fundamental Indirect Tensile Strength (ITS) value of dense graded HMA and also mechanical characteristics in terms of Indirect Tensile Stiffness Modulus (ITSM). In order to get an extended comparable data, four groups of different mixtures such as conventional mixture with only virgin aggregates (DV), mixture with RAP (DR), mixture with RAP and rejuvenator (DRR), and mixture with RAP, rejuvenator, CR (DRRCr) were investigated in this research experimentally. Finally, the results of those tests indicated that the mixtures with RAP and CR had the high stiffness and less thermal sensitivity, while the mixture with virgin aggregates only had very low values in comparison.
Resumo:
We have investigated if a new LEDs system has enough efficient energy to promote efficient shear and tensile bonding strength resistance under standardized tests. LEDs 470 +/- 10 nm can be used to photocure composite during bracket fixation. Advantages considering resistance to tensile and shear bonding strength when these systems were used are necessary to justify their clinical use. Forty eight human extracted premolars teeth and two light sources were selected, one halogen lamp and a LEDs system. Brackets for premolar were bonded through composite resin. Samples were submitted to standardized tests. A comparison between used sources under shear bonding strength test, obtained similar results; however, tensile bonding test showed distinct results: a statistical difference at a level of 1% between exposure times (40 and 60 seconds) and even to an interaction between light source and exposure time. The best result was obtained with halogen lamp use by 60 seconds, even during re-bonding; however LEDs system can be used for bonding and re-bonding brackets if power density could be increased.
Resumo:
We have investigated if a new LEDs system has enough efficient energy to promote efficient shear and tensile bonding strength resistance under standardized tests. LEDs 470 +/- 10 nm can be used to photocure composite during bracket fixation. Advantages considering resistance to tensile and shear bonding strength when these systems were used are necessary to justify their clinical use. Forty eight human extracted premolars teeth and two light sources were selected, one halogen lamp and a LEDs system. Brackets for premolar were bonded through composite resin. Samples were submitted to standardized tests. A comparison between used sources under shear bonding strength test, obtained similar results; however, tensile bonding test showed distinct results: a statistical difference at a level of 1% between exposure times (40 and 60 seconds) and even to an interaction between light source and exposure time. The best result was obtained with halogen lamp use by 60 seconds, even during re-bonding; however LEDs system can be used for bonding and re-bonding brackets if power density could be increased.
Resumo:
Purpose: This study evaluated the effect of surface conditioning methods and thermocycling on the bond strength between a resin composite and an indirect composite system in order to test the repair bond strength. Materials and Methods: Eighteen blocks (5 x 5 x 4 mm) of indirect resin composite (Sinfony) were fabricated according to the manufacturer's instructions. The specimens were randomly assigned to one of the following two treatment conditions (9 blocks per treatment): (1) 10% hydrofluoric acid (HF) for 90 s (Dentsply) + silanization, (2) silica coating with 30-Ìm SiOx particles (CoJet) + silanization. After surface conditioning, the bonding agent was applied (Adper Single Bond) and light polymerized. The composite resin (W3D Master) was condensed and polymerized incrementally to form a block. Following storage in distilled water at 37°C for 24 h, the indirect composite/resin blocks were sectioned in two axes (x and y) with a diamond disk under coolant irrigation to obtain nontrimmed specimens (sticks) with approximately 0.6 mm2 of bonding area. Twelve specimens were obtained per block (N = 216, n = 108 sticks). The specimens from each repaired block were again randomly divided into 2 groups and tested either after storage in water for 24 h or thermocycling (6000 cycles, 5°C to 55°C). The microtensile bond strength test was performed in a universal testing machine (crosshead speed: 1 mm/min). The mean bond strengths of the specimens of each block were statistically analyzed using two-way ANOVA (α = 0.05). Results: Both surface conditioning (p = 0.0001) and storage conditions (p = 0.0001) had a significant effect on the results. After 24 h water storage, silica coating and silanization (method 2) showed significantly higher bond strength results (46.4 ± 13.8 MPa) than that of hydrofluoric acid etching and silanization (method 1) (35.8 ± 9.7 MPa) (p < 0.001). After thermocycling, no significant difference was found between the mean bond strengths obtained with method 1 (34.1 ± 8.9 MPa) and method 2 (31.9 ± 7.9 MPa) (p > 0.05). Conclusion: Although after 24 h of testing, silica coating and silanization performed significantly better in resin-resin repair bond strength, both HF acid gel and silica coating followed by silanization revealed comparable bond strength results after thermocycling for 6000 times.
Resumo:
The purpose of this study was to evaluate the flexural strength of a direct composite, for indirect application, that received heat treatment, with or without investment. One indirect composite was used for comparison. For determination of the heat treatment temperature, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were performed, considering the initial weight loss temperature and glass transition temperature (Tg). Then, after photoactivation (600 mW/cm² - 40 s), the specimens (10 x 2 x 2 mm) were heat-treated following these conditions: 170ºC for 5, 10 or 15 min, embedded or not embedded in investment. Flexural strength was assessed as a means to evaluate the influence of different heat treatment periods and investment embedding on mechanical properties. The data were analyzed by ANOVA and Tukey's test (α = 0.05). TGA showed an initial weight loss temperature of 180ºC and DSC showed a Tg value of 157°C. Heat treatment was conducted in an oven (Flli Manfredi, Italy), after 37°C storage for 48 h. Flexural strength was evaluated after 120 h at 37°C storage. The results showed that different periods and investment embedding presented similar statistical values. Nevertheless, the direct composite resin with treatments presented higher values (178.7 MPa) compared to the indirect composite resin (146.0 MPa) and the same direct composite submitted to photoactivation only (151.7 MPa). Within the limitations of this study, it could be concluded that the heat treatment increased the flexural strength of the direct composite studied, leading to higher mechanical strength compared to the indirect composite.
Resumo:
The intra-buccal polymeric bioadhesive systems that can stay adhered to the oral soft tissues for drug programmed release, with the preventive and/or therapeutic purpose has been employed for large clinical situations. A system based on hydroxypropyl methyl cellulose/Carbopol 934`/magnesium stearate (HPMC/Cp/StMg) was developed having the sodium fluoride as active principle. This kind of system was evaluated according to its resistance to the removal by means of physical test of tensile strength. Swine buccal mucosa extracted immediately after animals` sacrifice was employed as substrate for the physical trials, to obtain 16 test bodies. Artificial saliva with or without mucin was used to involve the substrate/bioadhesive system sets during the trials. Artificial salivas viscosity was determined by means of Brookfield viscometer, showing the artificial saliva with mucin 10.0 cP, and the artificial saliva without mucin 7.5 cP. The tensile strength assays showed the following averages: for the group ""artificial saliva with mucin"" - 12.89 Pa, and for the group ""without mucin"" - 12.35 Pa. Statistical analysis showed no significant difference between the assays for both artificial salivas, and it was possible to conclude that the variable mucin did not interfered with the bioadhesion process for the polymeric devices. The device was able to release fluoride in a safe, efficient and constant way up to 8 hours.
Resumo:
The aim of this in vitro study was to investigate the effect of erbium:yttrium-aluminum-garnet (Er:YAG) laser irradiation on dentinal collagen by transmission electron microscopy and to analyze the resin-dentin interface by scanning electron microscopy. A tensile bond strength test was also applied. Specimens from 69 sound human third molars were randomly divided into three groups: control (no laser), and two irradiated groups, laser 250 (250 mJ/2 Hz) and laser 400 (400 mJ/4 Hz). Then, specimens were restored with two adhesive systems, an etch-and-rinse or a self-etch system. Although ultrastructural examination showed a modified surface in the irradiated dentin, there was no statistical difference in bond strength values between the laser groups and controls (P < 0.05). In conclusion, the use of Er:YAG laser for ablating human dentin did not alter the main adhesion parameters when compared with those obtained by conventional methods, thus reinforcing its use in restorative dentistry.