937 resultados para Improper Partial Semi-Bilateral Generating Function
Resumo:
In this article, we study further properties of a skew normal distribution, called the skew-normal-Cauchy (SNC) distribution by Nadarajah and Kotz (2003). A stochastic representation is obtained which allows alternative derivations for moments, moments generating function, and skewness and kurtosis coefficients. Issues related to singularity of the Fisher information matrix are investigated.
Resumo:
In this article, we study a new class of non negative distributions generated by the symmetric distributions around zero. For the special case of the distribution generated using the normal distribution, properties like moments generating function, stochastic representation, reliability connections, and inference aspects using methods of moments and maximum likelihood are studied. Moreover, a real data set is analyzed, illustrating the fact that good fits can result.
Resumo:
The modeling and analysis of lifetime data is an important aspect of statistical work in a wide variety of scientific and technological fields. Good (1953) introduced a probability distribution which is commonly used in the analysis of lifetime data. For the first time, based on this distribution, we propose the so-called exponentiated generalized inverse Gaussian distribution, which extends the exponentiated standard gamma distribution (Nadarajah and Kotz, 2006). Various structural properties of the new distribution are derived, including expansions for its moments, moment generating function, moments of the order statistics, and so forth. We discuss maximum likelihood estimation of the model parameters. The usefulness of the new model is illustrated by means of a real data set. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Birnbaum and Saunders (1969a) introduced a probability distribution which is commonly used in reliability studies For the first time based on this distribution the so-called beta-Birnbaum-Saunders distribution is proposed for fatigue life modeling Various properties of the new model including expansions for the moments moment generating function mean deviations density function of the order statistics and their moments are derived We discuss maximum likelihood estimation of the model s parameters The superiority of the new model is illustrated by means of three failure real data sets (C) 2010 Elsevier B V All rights reserved
Resumo:
The Laplace distribution is one of the earliest distributions in probability theory. For the first time, based on this distribution, we propose the so-called beta Laplace distribution, which extends the Laplace distribution. Various structural properties of the new distribution are derived, including expansions for its moments, moment generating function, moments of the order statistics, and so forth. We discuss maximum likelihood estimation of the model parameters and derive the observed information matrix. The usefulness of the new model is illustrated by means of a real data set. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The Gumbel distribution is perhaps the most widely applied statistical distribution for problems in engineering. We propose a generalization-referred to as the Kumaraswamy Gumbel distribution-and provide a comprehensive treatment of its structural properties. We obtain the analytical shapes of the density and hazard rate functions. We calculate explicit expressions for the moments and generating function. The variation of the skewness and kurtosis measures is examined and the asymptotic distribution of the extreme values is investigated. Explicit expressions are also derived for the moments of order statistics. The methods of maximum likelihood and parametric bootstrap and a Bayesian procedure are proposed for estimating the model parameters. We obtain the expected information matrix. An application of the new model to a real dataset illustrates the potentiality of the proposed model. Two bivariate generalizations of the model are proposed.
Resumo:
The Conway-Maxwell Poisson (COMP) distribution as an extension of the Poisson distribution is a popular model for analyzing counting data. For the first time, we introduce a new three parameter distribution, so-called the exponential-Conway-Maxwell Poisson (ECOMP) distribution, that contains as sub-models the exponential-geometric and exponential-Poisson distributions proposed by Adamidis and Loukas (Stat Probab Lett 39:35-42, 1998) and KuAY (Comput Stat Data Anal 51:4497-4509, 2007), respectively. The new density function can be expressed as a mixture of exponential density functions. Expansions for moments, moment generating function and some statistical measures are provided. The density function of the order statistics can also be expressed as a mixture of exponential densities. We derive two formulae for the moments of order statistics. The elements of the observed information matrix are provided. Two applications illustrate the usefulness of the new distribution to analyze positive data.
Resumo:
For any continuous baseline G distribution [G. M. Cordeiro and M. de Castro, A new family of generalized distributions, J. Statist. Comput. Simul. 81 (2011), pp. 883-898], proposed a new generalized distribution (denoted here with the prefix 'Kw-G'(Kumaraswamy-G)) with two extra positive parameters. They studied some of its mathematical properties and presented special sub-models. We derive a simple representation for the Kw-Gdensity function as a linear combination of exponentiated-G distributions. Some new distributions are proposed as sub-models of this family, for example, the Kw-Chen [Z.A. Chen, A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function, Statist. Probab. Lett. 49 (2000), pp. 155-161], Kw-XTG [M. Xie, Y. Tang, and T.N. Goh, A modified Weibull extension with bathtub failure rate function, Reliab. Eng. System Safety 76 (2002), pp. 279-285] and Kw-Flexible Weibull [M. Bebbington, C. D. Lai, and R. Zitikis, A flexible Weibull extension, Reliab. Eng. System Safety 92 (2007), pp. 719-726]. New properties of the Kw-G distribution are derived which include asymptotes, shapes, moments, moment generating function, mean deviations, Bonferroni and Lorenz curves, reliability, Renyi entropy and Shannon entropy. New properties of the order statistics are investigated. We discuss the estimation of the parameters by maximum likelihood. We provide two applications to real data sets and discuss a bivariate extension of the Kw-G distribution.
Resumo:
This article introduces generalized beta-generated (GBG) distributions. Sub-models include all classical beta-generated, Kumaraswamy-generated and exponentiated distributions. They are maximum entropy distributions under three intuitive conditions, which show that the classical beta generator skewness parameters only control tail entropy and an additional shape parameter is needed to add entropy to the centre of the parent distribution. This parameter controls skewness without necessarily differentiating tail weights. The GBG class also has tractable properties: we present various expansions for moments, generating function and quantiles. The model parameters are estimated by maximum likelihood and the usefulness of the new class is illustrated by means of some real data sets. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
We study a five-parameter lifetime distribution called the McDonald extended exponential model to generalize the exponential, generalized exponential, Kumaraswamy exponential and beta exponential distributions, among others. We obtain explicit expressions for the moments and incomplete moments, quantile and generating functions, mean deviations, Bonferroni and Lorenz curves and Gini concentration index. The method of maximum likelihood and a Bayesian procedure are adopted for estimating the model parameters. The applicability of the new model is illustrated by means of a real data set.
Resumo:
The beta-Birnbaum-Saunders (Cordeiro and Lemonte, 2011) and Birnbaum-Saunders (Birnbaum and Saunders, 1969a) distributions have been used quite effectively to model failure times for materials subject to fatigue and lifetime data. We define the log-beta-Birnbaum-Saunders distribution by the logarithm of the beta-Birnbaum-Saunders distribution. Explicit expressions for its generating function and moments are derived. We propose a new log-beta-Birnbaum-Saunders regression model that can be applied to censored data and be used more effectively in survival analysis. We obtain the maximum likelihood estimates of the model parameters for censored data and investigate influence diagnostics. The new location-scale regression model is modified for the possibility that long-term survivors may be presented in the data. Its usefulness is illustrated by means of two real data sets. (C) 2011 Elsevier B.V. All rights reserved.