876 resultados para Implant surface treatment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effect of surface treatment with Er:YAG and Nd:YAG lasers on resin composite bond strength to recently bleached dentin. A total of 120 bovine incisors were distributed into two groups: C- without bleaching; and B- bleached with 35% hydrogen peroxide. Each group was divided into three subgroups: N- without laser treatment; Nd- Nd:YAG laser irradiation; and Er- Er:YAG laser irradiation. The adhesive system (Adper Single Bond 2) was applied and composite build-ups were constructed with Filtek Supreme (3M/ESPE). The teeth were sectioned to obtain dentin-resin sticks (1x1mm(2)) and tested by microtensile bond testing. The bond strength values in group B, subgroup N (16.1 +/- 3.5MPa) presented no significant difference compared with group B, subgroup Er (14.7 +/- 6.1MPa). Group C, subgroup N (26.8 +/- 7.4MPa) presented no significant difference compared with group B, subgroup Nd (28.8 +/- 5.6MPa). Group C, subgroup Nd (36.1 +/- 7.9MPa) presented a significant increase in bond strength compared with the other groups. The Er:YAG laser did not influence the bond strength of bleached specimens, and the use of the Nd:YAG laser on bleached specimens was able to reverse the immediate effects of bleaching, obtaining bond strength values similar to those of the control group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The purpose of this study was to assess the influence of conditioning methods and thermocycling on the bond strength between composite core and resin cement. Material and Methods: Eighty blocks (8x8x4 mm) were prepared with core build-up composite. The cementation surface was roughened with 120-grit carbide paper and the blocks were thermocycled (5,000 cycles, between 5 degrees C and 55 degrees C, with a 30 s dwell time in each bath). A layer of temporary luting agent was applied. After 24 h, the layer was removed, and the blocks were divided into five groups, according to surface treatment: (NT) No treatment (control); (SP) Grinding with 120-grit carbide paper; (AC) Etching with 37% phosphoric acid; (SC) Sandblasting with 30 mm SiO2 particles, silane application; (AO) Sandblasting with 50 mu m Al2O3 particles, silane application. Two composite blocks were cemented to each other (n=8) and sectioned into sticks. Half of the specimens from each block were immediately tested for microtensile bond strength (mu TBS), while the other half was subjected to storage for 6 months, thermocycling (12,000 cycles, between 5 degrees C and 55 degrees C, with a dwell time of 30 s in each bath) and mu TBS test in a mechanical testing machine. Bond strength data were analyzed by repeated measures two-way ANOVA and Tukey test (alpha=0.05). Results: The mu TBS was significantly affected by surface treatment (p=0.007) and thermocycling (p=0.000). Before aging, the SP group presented higher bond strength when compared to NT and AC groups, whereas all the other groups were statistically similar. After aging, all the groups were statistically similar. SP submitted to thermocycling showed lower bond strength than SP without thermocycling. Conclusion: Core composites should be roughened with a diamond bur before the luting process. Thermocycling tends to reduce the bond strength between composite and resin cement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the influence of the surface pretreatment of indirect resin composite (Signum, Admira Lab and Sinfony) on the microtensile bond strength of a resin cement. Sixty samples made of each brand were divided into 6 groups, according to surface treatment: (1) control; (2) controlled-air abrasion with Al2O3; (3) Er:YAG Laser 200 mJ, 10 Hz, for 10s; (4) Er: YAG Laser 300 mJ, 10 Hz, for 10 s; (5) Nd:YAG 80 mJ, S15Hz for 1 min; (6) Nd:YAG 120mJ, 15 Hz for 1 min. After treatments, all the groups received an application of 37% phosphoric acid and adhesive. The pair of blocks of the same brand were cemented to each other with dual resin cement. The blocks were sectioned to obtain resin-resin sticks (1 x1 mm) and analyzed by microtensile bond testing. The bond strength values were statistically different, irrespective of the surface treatment performed, with highest values for Sinfony (43.81 MPa) and lowest values for Signum (32.33 MPA). The groups treated with the Nd:YAG laser showed the lowest bond strength values and power did not interfere in the results, both for Nd:YAG laser and Er:YAG. Controlled-air abrasion with Al203 is an efficient surface treatment method and the use of the Nd:YAG and Er:YAG lasers reduced bond strength, irrespective of the intensity of energy used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: In the present work, a susceptibility and efficacy of the Ti–7.5Mo alloy and Ti alloy to bacterial biofilm formation after surface treatment was evaluated. Methods and materials: The alloy Ti–7.5Mo was obtained in arc furnace under an argon atmosphere. Ingots were then homogenized under vacuum at 1100 °C for 86.4 ks to eliminate chemical segregation and after cold worked discs were cutting. Samples were immersed in NaOH aqueous solution (5 M) and treated at 450 °C. Biofilms were grown in Ti–7.5Mo discs immersed in sterile brain heart infusion broth (BHI)containing 5% sucrose, inoculated with microbial suspension (106 cells/ml) and incubated for 5 days. Next, the discs were placed in tubes with sterile physiological solution 0.9% sodium chloride (NaCl) and sonicated for to disperse the biofilms. Tenfold serial dilutions were carried and aliquots seeded in selective agar, which were then incubated for 48 h. Then, the numbers CFU/ml (log 10) were counted and analyzed statistically. Scanning electron microscopy (SEM) on discs with biofilms groups was performed, atomic force microscope (AFM) and contact angle. Results: The results show that there is a 5% difference in bacterial adhesion between pure titanium and Ti–7.5Mo alloy. Conclusion: It was concluded that the greater the roughness, the greater the hydrophilic effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the study was to evaluate the influence of the biomimetic surface treatment in osseointegration of experimental alloy Ti30Ta for dentistry applications. Methods and materials: Experimental alloy with Ta concentration of 30 wt% was produced from sheets of commercially pure titanium (99.9%) and tantalum (99.9%). Ingots were melted in an arc furnace under an argon atmosphere and re-melted ten times at least. They were homogenized under vacuum at 1100 °C for 86.4 ks to eliminate chemical segregation and cold-worked by swaging. Implants with 2.5 mm diameter and 2.0 mm of height were machined (Fig. 1a), treated and inserted in animals for in vivo study. The implants were submitted surface treatment according methodology development for our group. Analyzes were performed by Scanning Electron microscopy (SEM), Atomic Force Microscopy (AFM). Osteoblast morphology on Ti-30Ta alloys was examined after 4 and 7 days of incubation with MSCs using SEM imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface treatment interferes with the primary stability of dental implants because it promotes a chemical and micromorphological change on the surface and thus stimulates osseointegration. This study aimed to evaluate the effects of different surface treatments on primary stability by analyzing insertion torque (IT) and pullout force (PF). Eight samples of implants with different surface treatments (TS - external hexagon with acid surface treatment; and MS - external hexagon, machined surface), all 3.75 mm in diameter x 11.5 mm in length, were inserted into segments of artificial bones. The IT of each sample was measured by an electronic torquemeter, and then the pullout test was done with a universal testing machine. The results were subjected to ANOVA (p < 0.05), followed by Tukey's test (p < 0.05). The IT results showed no statistically significant difference, since the sizes of the implants used were very similar, and the bone used was not highly resistant. The PF values (N) were, respectively, TS = 403.75 +/- 189.80 and MS = 276.38 +/- 110.05. The implants were shown to be different in terms of the variables of maximum force (F = 4.401, p = 0.0120), elasticity in maximum flexion (F = 3.672, p = 0.024), and relative stiffness (F = 4.60, p = 0.01). In this study, external hexagonal implants with acid surface treatment showed the highest values of pullout strength and better stability, which provide greater indication for their use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of CO2 continuous laser irradiation on the surface properties of veneering porcelains has already been tested. The surface observed after laser irradiation is similar to that achieved by auto-glaze in terms of roughness and color parameters (Sgura R, et al. Dental Materials 2011;27(Suppl. 1):e72–73). The purpose of this study was to analyze the surface porosity of porcelain discs after CO2 laser treatment and compare it to auto-glaze treatment, in furnace. A morphological analysis of the porcelain surface was conducted using atomic force microscopy (AFM) and conventional optical microscopy (OM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: To compare the gene expression profile of osseointegration associated with a moderately rough and a chemically modified hydrophilic moderately rough surface in a human model. MATERIAL AND METHODS: Eighteen solid screw-type cylindrical titanium implants, 4 mm long and 2.8 mm wide, with either a moderately rough (SLA) or a chemically modified moderately rough (SLActive) surface were surgically inserted in the retromolar area of nine human volunteers. The devices were removed using a trephine following 4, 7 and 14 days of healing. The tissue surrounding the implant was harvested, total RNA was extracted and microarray analysis was carried out to identify the differences in the transcriptome between the SLA and SLActive surfaces at days 4, 7 and 14. RESULTS: There were no functionally relevant gene ontology categories that were over-represented in the list of genes that were differentially expressed at day 4. However, by day 7, osteogenesis- and angiogenesis-associated gene expression were up-regulated on the SLActive surface. Osteogenesis and angiogenesis appeared to be regulated by BMP and VEGF signalling, respectively. By day 14, VEGF signalling remains up-regulated on the SLActive surface, while BMP signalling was up-regulated on the SLA surface in what appeared to be a delayed compensatory response. Furthermore, neurogenesis was a prominent biological process within the list of differentially expressed genes, and it was influenced by both surfaces. CONCLUSIONS: Compared with SLA, SLActive exerts a pro-osteogenic and pro-angiogenic influence on gene expression at day 7 following implant insertion, which may be responsible for the superior osseointegrative properties of this surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fourier transform infrared (FTIR) spectroscopy was applied to determine the type of surface treatment and dose used on cork stoppers and to predict the friction between stopper and bottleneck. Agglomerated cork stoppers were finished with two different doses and using two surface treatments: P (paraffin and silicone), 15 and 25 mg/stopper, and S (only silicone), 10 and 15 mg/stopper. FTIR spectra were recorded at five points for each stopper by attenuated total reflectance (ATR). Absorbances at 1,010, 2,916, and 2,963 cm -1 were obtained in each spectrum. Discriminant analysis techniques allowed the treatment, and dose applied to each stopper to be identified from the absorbance values. 91.2% success rates were obtained from individual values and 96.0% from the mean values of each stopper. Spectrometric data also allowed treatment homogeneity to be determined on the stopper surface, and a multiple regression model was used to predict the friction index (If = Fe/Fc) (R 2 = 0.93)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is projected that by 2020, there will be 138 million Americans over 45, the age at which the increased incidence of heart diseases is documented. Many will require stents. This multi-billion dollar industry, with over 2 million patients worldwide, 15% of whom use Nitinol stents have experienced a decline in sales recently, due in part to thrombosis. It is a sudden blood clot that forms inside stents. As a result, the Food and Drug Administration and American Heart Association are calling for a new generation of stents, new designs and different alloys that are more adaptable to the arteries. The future of Nitinol therefore depends on a better understanding of the mechanisms by which Nitinol surfaces can be rendered stable and inert. In this investigation, binary and ternary Nitinol alloys were prepared and subjected to various surface treatments such as electropolishing (EP), magnetoelectropolishing (MEP) and water boiling & passivation (W&P). In vitro corrosion tests were conducted on Nitinol alloys in accordance with ASTM F 2129-08. The metal ions released into the electrolyte during corrosion tests were measured by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). Biocompatibility was assessed by observing the growth of human umbilical vein endothelial cells (HUVEC) on the surface of Nitinol alloys. Static and dynamic immersion tests were performed by immersing the Nitinol alloys in cell culture media and measuring the amount of metal ions released in solution. Sulforhodamine B (SRB) assays were performed to elucidate the effect of metal ions on the growth of HUVEC cells. The surfaces of the alloys were studied using Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) respectively. Finally, wettability and surface energy were measured by Contact Angle Meter, whereas surface roughness was measured by Atomic Force Microscopy (AFM). All the surface treated alloys exhibited high resistance to corrosion when compared with untreated alloys. SRB assays revealed that Ni and Cu ions exhibited greater toxicity than Cr, Ta and Ti ions on HUVEC cells. EP and MEP alloys possessed relatively smooth surfaces and some were composed of nickel oxides instead of elemental nickel as determined by XPS. MEP exhibited lowest surface energy and lowest surface roughness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the effect of an Argon-based atmospheric pressure plasma (APP) surface treatment operated chairside at atmospheric pressure conditions applied immediately prior to dental implant placement in a canine model. Surfaces investigated comprised: rough titanium surface (Ti) and rough titanium surface + Argon-based APP (Ti-Plasma). Surface energy was characterized by the Owens-Wendt-Rabel-Kaelble method and chemistry by X-ray photoelectron spectroscopy (XPS). Six adult beagles dogs received two plateau-root form implants (n = 1 each surface) in each radii, providing implants that remained 1 and 3 weeks in vivo. Histometric parameters assessed were bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO). Statistical analysis was performed by Kruskall-Wallis (95% level of significance) and Dunn's post-hoc test. The XPS analysis showed peaks of Ti, C, and O for the Ti and Ti- Plasma surfaces. Both surfaces presented carbon primarily as hydrocarbon (C?C, C?H) with lower levels of oxidized carbon forms. The Ti-Plasma presented large increase in the Ti (+11%) and O (+16%) elements for the Ti- Plasma group along with a decrease of 23% in surface-adsorbed C content. At 1 week no difference was found in histometric parameters between groups. At 3 weeks significantly higher BIC (>300%) and mean BAFO (>30%) were observed for Ti-Plasma treated surfaces. From a morphologic standpoint, improved interaction between connective tissue was observed at 1 week, likely leading to more uniform and higher bone formation at 3 weeks for the Ti-Plasma treated implants was observed. (C) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 2012.