950 resultados para Hamilton-Jacobi equations


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we consider nonautonomous optimal control problems of infinite horizon type, whose control actions are given by L-1-functions. We verify that the value function is locally Lipschitz. The equivalence between dynamic programming inequalities and Hamilton-Jacobi-Bellman (HJB) inequalities for proximal sub (super) gradients is proven. Using this result we show that the value function is a Dini solution of the HJB equation. We obtain a verification result for the class of Dini sub-solutions of the HJB equation and also prove a minimax property of the value function with respect to the sets of Dini semi-solutions of the HJB equation. We introduce the concept of viscosity solutions of the HJB equation in infinite horizon and prove the equivalence between this and the concept of Dini solutions. In the Appendix we provide an existence theorem. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the linear and nonlinear feedback control techniques for chaotic systems were been considered. The optimal nonlinear control design problem has been resolved by using Dynamic Programming that reduced this problem to a solution of the Hamilton-Jacobi-Bellman equation. In present work the linear feedback control problem has been reformulated under optimal control theory viewpoint. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations for the Rössler system and the Duffing oscillator are provided to show the effectiveness of this method. Copyright © 2005 by ASME.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Following the study of the Topologically Massive Theories under the Hamilton-Jacobi, we now analyze the constraint structure of the Self-Dual model as well as its correspondence with the Topologically Massive Electrodynamics. © 2013 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Schwinger quantum action principle is a dynamic characterization of the transformation functions and is based on the algebraic structure derived from the kinematic analysis of the measurement processes at the quantum level. As such, this variational principle, allows to derive the canonical commutation relations in a consistent way. Moreover, the dynamic pictures of Schrödinger, Heisenberg and a quantum Hamilton-Jacobi equation can be derived from it. We will implement this formalism by solving simple systems such as the free particle, the quantum harmonic oscillator and the quantum forced harmonic oscillator.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El propósito de esta tesis doctoral es el estudio de la conexión, mediante el problema de Riemann-Hilbert, entre sistemas discretos y la teoría de polinomios matriciales ortogonales. La investigación de los modelos integrables se originó en la Mecánica Clásica, en relación a la resolución de las ecuaciones de Newton [2]. Los trabajos de Liouville, Hamilton, Jacobi y otros sentaron las bases de los sistemas integrables como prototipos modelos resolubles por cuadraturas, v.g., por integración directa [7]. Hay una cantidad importante de investigación dedicada a los aspectos geométricos de los sistemas clásicos integrables y superintegrables [66], [82], especialmente en relación a la separación de variables de la ecuación de Hamilton-Jacobi [75]. Fue la aplicación, en la segunda mitad del siglo pasado, de la transformada espectral inversa para la resolución del problema de Cauchy de la ecuación de Korteweg-de Vries [42, 43] la que marcó el inicio de una nueva etapa en este campo, el del estudio de sistemas integrables con un número infinito de grados de libertad, que generalmente se expresan en términos de jerarquías de ecuaciones no lineales en derivadas parciales. Particularmente reseñable, por su aplicación en la hidrodinámica y en la óptica cuántica, es la aparición de las soluciones a un número de solitones arbitrario. En las últimas tres décadas ha habido un importante interés por el estudio de modelos discretos, v.g., sistemas dinámicos de nidos en un retículo de puntos, y expresados en términos de ecuaciones no lineales en diferencia parciales. Muchas de las técnicas encontradas en el mundo continuo se extendieron a este nuevo contexto discreto. Hay dos razones fundamentales para este interés...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We show that the projected Gross-Pitaevskii equation (PGPE) can be mapped exactly onto Hamilton's equations of motion for classical position and momentum variables. Making use of this mapping, we adapt techniques developed in statistical mechanics to calculate the temperature and chemical potential of a classical Bose field in the microcanonical ensemble. We apply the method to simulations of the PGPE, which can be used to represent the highly occupied modes of Bose condensed gases at finite temperature. The method is rigorous, valid beyond the realms of perturbation theory, and agrees with an earlier method of temperature measurement for the same system. Using this method we show that the critical temperature for condensation in a homogeneous Bose gas on a lattice with a uv cutoff increases with the interaction strength. We discuss how to determine the temperature shift for the Bose gas in the continuum limit using this type of calculation, and obtain a result in agreement with more sophisticated Monte Carlo simulations. We also consider the behavior of the specific heat.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 37F21, 70H20, 37L40, 37C40, 91G80, 93E20.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundamental principles of mechanics were primarily conceived for constant mass systems. Since the pioneering works of Meshcherskii (see historical review in Mikhailov (Mech. Solids 10(5):32-40, 1975), efforts have been made in order to elaborate an adequate mathematical formalism for variable mass systems. This is a current research field in theoretical mechanics. In this paper, attention is focused on the derivation of the so-called 'generalized canonical equations of Hamilton' for a variable mass particle. The applied technique consists in the consideration of the mass variation process as a dissipative phenomenon. Kozlov's (Stek. Inst. Math 223:178-184, 1998) method, originally devoted to the derivation of the generalized canonical equations of Hamilton for dissipative systems, is accordingly extended to the scenario of variable mass systems. This is done by conveniently writing the flux of kinetic energy from or into the variable mass particle as a 'Rayleigh-like dissipation function'. Cayley (Proc. R Soc. Lond. 8:506-511, 1857) was the first scholar to propose such an analogy. A deeper discussion on this particular subject will be left for a future paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the scattering equations recently proposed by Cachazo, He and Yuan in the special kinematics where their solutions can be identified with the zeros of the Jacobi polynomials. This allows for a non-trivial two-parameter family of kinematics. We present explicit and compact formulas for the n-gluon and n-graviton partial scattering amplitudes for our special kinematics in terms of Jacobi polynomials. We also provide alternative expressions in terms of gamma functions. We give an interpretation of the common reduced determinant appearing in the amplitudes as the product of the squares of the eigenfrequencies of small oscillations of a system whose equilibrium is the solutions of the scattering equations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 34K99, 44A15, 44A35, 42A75, 42A63

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modification of the Nekrassov method for finding a solution of a linear system of algebraic equations is given and a numerical example is shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extension of the uniform invariance principle for ordinary differential equations with finite delay is developed. The uniform invariance principle allows the derivative of the auxiliary scalar function V to be positive in some bounded sets of the state space while the classical invariance principle assumes that. V <= 0. As a consequence, the uniform invariance principle can deal with a larger class of problems. The main difficulty to prove an invariance principle for functional differential equations is the fact that flows are defined on an infinite dimensional space and, in such spaces, bounded solutions may not be precompact. This difficulty is overcome by imposing the vector field taking bounded sets into bounded sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we discuss the existence of mild, strict and classical solutions for a class of abstract integro-differential equations in Banach spaces. Some applications to ordinary and partial integro-differential equations are considered.