Optimal investment under stochastic volatility and power type utility function


Autoria(s): Benchaabane, Abbes; Benchettah, Azzedine
Data(s)

24/07/2016

24/07/2016

2011

Resumo

2000 Mathematics Subject Classification: 37F21, 70H20, 37L40, 37C40, 91G80, 93E20.

In this work we will study a problem of optimal investment in financial markets with stochastic volatility with small parameter. We used the averaging method of Bogoliubov for limited development for the optimal strategies when the small parameter of the model tends to zero and the limit for the optimal strategy and demonstrated the convergence of these optimal strategies.

Identificador

Serdica Mathematical Journal, Vol. 37, No 3, (2011), 237p-250p

1310-6600

http://hdl.handle.net/10525/2733

Idioma(s)

en

Publicador

Institute of Mathematics and Informatics Bulgarian Academy of Sciences

Palavras-Chave #Hamilton-Jacobi-Bellman Equation #Invariant Measure #Mean-Reverting Process #Optimal Stochastic Control #Stochastic Volatility
Tipo

Article