937 resultados para Generalized variance decompositions
Resumo:
A simple and completely general representation of the exact exchange-correlation functional of density-functional theory is derived from the universal Lieb-Oxford bound, which holds for any Coulomb-interacting system. This representation leads to an alternative point of view on popular hybrid functionals, providing a rationale for why they work and how they can be constructed. A similar representation of the exact correlation functional allows to construct fully nonempirical hyper-generalized-gradient approximations (HGGAs), radically departing from established paradigms of functional construction. Numerical tests of these HGGAs for atomic and molecular correlation energies and molecular atomization energies show that even simple HGGAs match or outperform state-of-the-art correlation functionals currently used in solid-state physics and quantum chemistry.
Resumo:
The Generalized Finite Element Method (GFEM) is employed in this paper for the numerical analysis of three-dimensional solids tinder nonlinear behavior. A brief summary of the GFEM as well as a description of the formulation of the hexahedral element based oil the proposed enrichment strategy are initially presented. Next, in order to introduce the nonlinear analysis of solids, two constitutive models are briefly reviewed: Lemaitre`s model, in which damage and plasticity are coupled, and Mazars`s damage model suitable for concrete tinder increased loading. Both models are employed in the framework of a nonlocal approach to ensure solution objectivity. In the numerical analyses carried out, a selective enrichment of approximation at regions of concern in the domain (mainly those with high strain and damage gradients) is exploited. Such a possibility makes the three-dimensional analysis less expensive and practicable since re-meshing resources, characteristic of h-adaptivity, can be minimized. Moreover, a combination of three-dimensional analysis and the selective enrichment presents a valuable good tool for a better description of both damage and plastic strain scatterings.
Resumo:
A procedure is proposed for the determination of the residence time distribution (RTD) of curved tubes taking into account the non-ideal detection of the tracer. The procedure was applied to two holding tubes used for milk pasteurization in laboratory scale. Experimental data was obtained using an ionic tracer. The signal distortion caused by the detection system was considerable because of the short residence time. Four RTD models, namely axial dispersion, extended tanks in series, generalized convection and PER + CSTR association, were adjusted after convolution with the E-curve of the detection system. The generalized convection model provided the best fit because it could better represent the tail on the tracer concentration curve that is Caused by the laminar velocity profile and the recirculation regions. Adjusted model parameters were well cot-related with the now rate. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Due to the several kinds of services that use the Internet and data networks infra-structures, the present networks are characterized by the diversity of types of traffic that have statistical properties as complex temporal correlation and non-gaussian distribution. The networks complex temporal correlation may be characterized by the Short Range Dependence (SRD) and the Long Range Dependence - (LRD). Models as the fGN (Fractional Gaussian Noise) may capture the LRD but not the SRD. This work presents two methods for traffic generation that synthesize approximate realizations of the self-similar fGN with SRD random process. The first one employs the IDWT (Inverse Discrete Wavelet Transform) and the second the IDWPT (Inverse Discrete Wavelet Packet Transform). It has been developed the variance map concept that allows to associate the LRD and SRD behaviors directly to the wavelet transform coefficients. The developed methods are extremely flexible and allow the generation of Gaussian time series with complex statistical behaviors.
Resumo:
In this technical note we consider the mean-variance hedging problem of a jump diffusion continuous state space financial model with the re-balancing strategies for the hedging portfolio taken at discrete times, a situation that more closely reflects real market conditions. A direct expression based on some change of measures, not depending on any recursions, is derived for the optimal hedging strategy as well as for the ""fair hedging price"" considering any given payoff. For the case of a European call option these expressions can be evaluated in a closed form.
Resumo:
In this article, we consider the stochastic optimal control problem of discrete-time linear systems subject to Markov jumps and multiplicative noise under three kinds of performance criterions related to the final value of the expectation and variance of the output. In the first problem it is desired to minimise the final variance of the output subject to a restriction on its final expectation, in the second one it is desired to maximise the final expectation of the output subject to a restriction on its final variance, and in the third one it is considered a performance criterion composed by a linear combination of the final variance and expectation of the output of the system. We present explicit sufficient conditions for the existence of an optimal control strategy for these problems, generalising previous results in the literature. We conclude this article presenting a numerical example of an asset liabilities management model for pension funds with regime switching.
Resumo:
The inverse Weibull distribution has the ability to model failure rates which are quite common in reliability and biological studies. A three-parameter generalized inverse Weibull distribution with decreasing and unimodal failure rate is introduced and studied. We provide a comprehensive treatment of the mathematical properties of the new distribution including expressions for the moment generating function and the rth generalized moment. The mixture model of two generalized inverse Weibull distributions is investigated. The identifiability property of the mixture model is demonstrated. For the first time, we propose a location-scale regression model based on the log-generalized inverse Weibull distribution for modeling lifetime data. In addition, we develop some diagnostic tools for sensitivity analysis. Two applications of real data are given to illustrate the potentiality of the proposed regression model.
Resumo:
In a sample of censored survival times, the presence of an immune proportion of individuals who are not subject to death, failure or relapse, may be indicated by a relatively high number of individuals with large censored survival times. In this paper the generalized log-gamma model is modified for the possibility that long-term survivors may be present in the data. The model attempts to separately estimate the effects of covariates on the surviving fraction, that is, the proportion of the population for which the event never occurs. The logistic function is used for the regression model of the surviving fraction. Inference for the model parameters is considered via maximum likelihood. Some influence methods, such as the local influence and total local influence of an individual are derived, analyzed and discussed. Finally, a data set from the medical area is analyzed under the log-gamma generalized mixture model. A residual analysis is performed in order to select an appropriate model.
Resumo:
Estimation of Taylor`s power law for species abundance data may be performed by linear regression of the log empirical variances on the log means, but this method suffers from a problem of bias for sparse data. We show that the bias may be reduced by using a bias-corrected Pearson estimating function. Furthermore, we investigate a more general regression model allowing for site-specific covariates. This method may be efficiently implemented using a Newton scoring algorithm, with standard errors calculated from the inverse Godambe information matrix. The method is applied to a set of biomass data for benthic macrofauna from two Danish estuaries. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A four parameter generalization of the Weibull distribution capable of modeling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone as well as non-monotone failure rates, which are quite common in lifetime problems and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the Weibull, extreme value, exponentiated Weibull, generalized Rayleigh and modified Weibull distributions, among others. We derive two infinite sum representations for its moments. The density of the order statistics is obtained. The method of maximum likelihood is used for estimating the model parameters. Also, the observed information matrix is obtained. Two applications are presented to illustrate the proposed distribution. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A four-parameter extension of the generalized gamma distribution capable of modelling a bathtub-shaped hazard rate function is defined and studied. The beauty and importance of this distribution lies in its ability to model monotone and non-monotone failure rate functions, which are quite common in lifetime data analysis and reliability. The new distribution has a number of well-known lifetime special sub-models, such as the exponentiated Weibull, exponentiated generalized half-normal, exponentiated gamma and generalized Rayleigh, among others. We derive two infinite sum representations for its moments. We calculate the density of the order statistics and two expansions for their moments. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is obtained. Finally, a real data set from the medical area is analysed.
Resumo:
The generalized Gibbs sampler (GGS) is a recently developed Markov chain Monte Carlo (MCMC) technique that enables Gibbs-like sampling of state spaces that lack a convenient representation in terms of a fixed coordinate system. This paper describes a new sampler, called the tree sampler, which uses the GGS to sample from a state space consisting of phylogenetic trees. The tree sampler is useful for a wide range of phylogenetic applications, including Bayesian, maximum likelihood, and maximum parsimony methods. A fast new algorithm to search for a maximum parsimony phylogeny is presented, using the tree sampler in the context of simulated annealing. The mathematics underlying the algorithm is explained and its time complexity is analyzed. The method is tested on two large data sets consisting of 123 sequences and 500 sequences, respectively. The new algorithm is shown to compare very favorably in terms of speed and accuracy to the program DNAPARS from the PHYLIP package.
Resumo:
The Coefficient of Variance (mean standard deviation/mean Response time) is a measure of response time variability that corrects for differences in mean Response time (RT) (Segalowitz & Segalowitz, 1993). A positive correlation between decreasing mean RTs and CVs (rCV-RT) has been proposed as an indicator of L2 automaticity and more generally as an index of processing efficiency. The current study evaluates this claim by examining lexical decision performance by individuals from three levels of English proficiency (Intermediate ESL, Advanced ESL and L1 controls) on stimuli from four levels of item familiarity, as defined by frequency of occurrence. A three-phase model of skill development defined by changing rCV-RT.values was tested. Results showed that RTs and CVs systematically decreased as a function of increasing proficiency and frequency levels, with the rCV-RT serving as a stable indicator of individual differences in lexical decision performance. The rCV-RT and automaticity/restructuring account is discussed in light of the findings. The CV is also evaluated as a more general quantitative index of processing efficiency in the L2.
Resumo:
For all odd integers n and all non-negative integers r and s satisfying 3r + 5s = n(n -1)/2 it is shown that the edge set of the complete graph on n vertices can be partitioned into r 3-cycles and s 5-cycles. For all even integers n and all non-negative integers r and s satisfying 3r + 5s = n(n-2)/2 it is shown that the edge set of the complete graph on n vertices with a 1-factor removed can be partitioned into r 3-cycles and s 5-cycles. (C) 1998 John Wiley & Sons, Inc.