903 resultados para Funes, Patricia
Resumo:
El presente trabajo se realiza bajo la visión Socioepistemología la cual adopta a las prácticas sociales como el motor que permite la construcción del conocimiento. Desde esta perspectiva nuestro trabajo toma las prácticas de modelación matemática como el eje que guía nuestro diseño; donde el objetivo es la construcción de lo Inversamente Proporcional (IP) por medio de la interacción de los modelos analítico, numérico y el planteamiento de la situación. El papel que le otorgamos al contexto es primordial para poder dotar de significado lo IP. Presentamos el desarrollo y los resultados obtenidos del diseño de aprendizaje elaborado con base en la Ingeniería didáctica de Artigue (1998). El reporte es parte de una investigación en curso.
Resumo:
En el presente trabajo se reportan los resultados obtenidos al implementar una propuesta de situación didáctica diseñada previamente para ayudar a los estudiantes de segundo año de secundaria a mejorar sus procesos de justificación. En el diseño de las actividades se consideró la Teoría de Situaciones Didácticas de Guy Brousseau y como herramienta para la elaboración de la secuencia a la Visualización. El contenido central de la propuesta es sobre temas de geometría plana. Por tanto el presente reporte tiene como objetivo dar a conocer los resultados logrados durante la investigación; dentro de los cuales encontramos que a través de los ejercicios de visualización se apoyó a los alumnos comprobar resultados y construir conceptos.
Resumo:
La estadística se ha convertido en un instrumento fundamental del análisis de datos en las diferentes áreas de conocimiento. Bajo la necesidad de transmitir una herramienta que se relacione con los resultados obtenidos, su enseñanza debe tener en cuenta el marco en el cual se validan los resultados. Proponemos un análisis de los diferentes aspectos involucrados en este proceso. Se espera realizar una descripción de los correspondientes marcos de referencia en los cuales se tiene en cuenta tanto la naturaleza epistemológica de los contenidos, los planos cognitivo y didáctico, todos ellos enmarcados en aspectos socioculturales.
Resumo:
Esta investigación que forma parte de las tesis de maestría, se realiza en México con estudiantes de secundaria, de edades 14-15 años. El objetivo es dar a conocer las dificultades; que a partir de un análisis comparativo, tienen los alumnos al tratar de construir una expresión algebraica de segundo orden que defina el enésimo término al usar sucesiones figurativas. Para ello, se ha estado haciendo uso de dos de sus cuatro componentes del Modelo Teórico Local [MTL] (Filloy, 1999): modelo de enseñanza y de procesos cognoscitivos. Se realiza una evaluación diagnóstica, se clasifica a la población según los distintos perfiles: alto, medio y bajo rendimiento, para observar en entrevista clínica videograbada y elaborar un reporte de observaciones acorde al esquema de desarrollo de experimentación perteneciente al MTL.
Resumo:
Nos proponemos estudiar las construcciones de polígonos regulares con regla y compás con la asistencia del GeoGebra, y presentar una secuencia de acciones que pueden resultar de base para enseñar estos conceptos. Para un mejor aprovechamiento de este trabajo, los lectores deberían tener nociones de geometría, particularmente estar familiarizados con los problemas de construcciones con regla y compás. También es recomendable tener conocimientos de estructuras algebraicas, especialmente de extensiones de cuerpos. Por estos motivos está dirigido a docentes de educación terciaria y a estudiantes que tengan los conocimientos mencionados anteriormente.
Resumo:
En este cursillo trabajaremos una propuesta de ingeniería didáctica para el estudio de las cónicas como lugares geométricos a partir de un trabajo experimental con espejos y su modelación con geometría dinámica.
Resumo:
El objetivo de esta charla es presentar algunos resultados recientes sobre teorías elementales en matemáticas para el desarrollo del talento en matemáticas. En particular, se mostrarán algunos resultados relacionados con la teoría de grafos y la teoría reticular, ambas, teorías matemáticas que han venido siendo adaptadas por el Grupo Yaglom de la Universidad Sergio Arboleda para los cursos de pretalentos y talentos en matemáticas.
Resumo:
En años recientes, un cuerpo creciente de investigaciones en didáctica de las matemáticas han identificado algunas dificultades en relación con el aprendizaje de contenidos temáticos, procesos y contextos relacionados con el pensamiento espacial y sistemas geométricos, siendo comúnmente atribuidas a causas de orden epistemológico, cognitivo, curricular y didáctico. En este sentido se revela como prometedor el estudio del proceso de integración al currículo y a las prácticas escolares, de recursos, concretamente lo que se refiere a materiales manipulativos. Esto con la intención de fortalecer en los estudiantes los conocimientos adquiridos para resolver algunos problemas de su entorno escolar y cotidiano, a medida que avanza su proceso de aprendizaje.
Resumo:
El presente trabajo forma parte de la primera etapa del Proyecto de Investigación “Análisis del Lenguaje Matemático y su influencia en los procesos de Validación en estudiantes universitarios de Ingeniería” realizado en forma conjunta por la Facultad de Agronomía UNCPBA (Azul-Argentina), y la Facultad de Química e Ingeniería UCA (Rosario-Argentina). Aquí se presentan y analizan los resultados de una encuesta piloto en pos de caracterizar las dificultades y obstáculos para la comprensión y traducción entre los registros de expresiones verbales o escritas (lenguaje proposicional) y su representación en lenguaje algebraico (uso de símbolos matemáticos) en los estudiantes que ingresan a la Universidad.
Resumo:
A partir de este trabajo se busca establecer una relación entre el análisis epistemológico de la matemática y los procesos de enseñanza-aprendizaje de la geometría, centrados en un estudio de los problemas que históricamente han fundamentado la integral, desde la postura de resolución de problemas, las ventajas e implicaciones para el trabajo en el aula, el docente y el estudiante. Se hace una presentación del trabajo realizado geométrica y analíticamente para obtener las fórmulas del cálculo de área y volumen de algunas figuras, encaminado a un estudio sobre la importancia del tratamiento de situaciones problema para la enseñanza de la geometría, partiendo de los aportes que desde las situaciones históricamente abordadas se pueden realizar al conocimiento del profesor y los aspectos que puede tener en cuenta para orientar la enseñanza.
Resumo:
En esta charla se presentará el trabajo realizado durante el año 2010 por el grupo Nuevas Tecnologías de EDUMAT-UIS coordinado por el Dr. Martín Eduardo Acosta Gempeler. El grupo viene realizando un trabajo de capacitación a profesores de varios colegios del área metropolitana de Bucaramanga en cuanto a la implementación de software de geometría dinámica en la enseñanza de diferentes conceptos geométricos en secundaria.
Resumo:
Una secuencia didáctica se entiende como un sistema de reflexión y actuación del profesor en donde se explicitan aquellos aspectos del quehacer didáctico fundamentales a toda acción de enseñanza y aprendizaje, y en el que participan estudiantes, docentes, saberes y el entorno. En la secuencia didáctica a la que se refiere esta ponencia, propuesta para la enseñanza de la semejanza, los fractales serán el recurso a través del cual se identificarán las características y propiedades de la semejanza. En la planeación se tuvieron en cuenta la relación intrafigural y las transformaciones geométricas propuestas por Lemonidis, como referente teórico para analizar el concepto de semejanza.
Resumo:
Reconociendo la importancia que tienen los algoritmos en el proceso de resolución de problemas, particularmente en la geometría, se identificaron algunas formas en las que se usan algoritmos que son conocidos para los resolutores, durante la resolución de algún problema. A tales formas se les ha dado el nombre de uso de algoritmos y, específicamente, se describen y se muestran evidencias de los usos relacionados con la obtención de nueva información que permita ampliar los caminos considerados para la solución del problema.
Resumo:
Se presenta un análisis sobre los propósitos de la investigación del discurso matemático escolar, los tipos de discursos que se desarrollan en el aula, así como las contribuciones que ofrecen los estudios en este campo, particularmente, en la reconstrucción del discurso matemático escolar.
Resumo:
Que la educación por sí misma es una actividad cooperativa, es una afirmación que hasta los propios estudiantes reconocen en sus mejores experiencias educativas en un marco pleno de cooperación, y con la guía adecuada. Como orientación para el desarrollo de actividades en el marco del aprendizaje cooperativo, la organización y esquematización de prescripciones, la identificación de los procesos de aprendizaje, con la correspondiente función de la enseñanza y la orientación para el docente, es que se propone interesar al alumno por el proceso y por los resultados. Para la etapa de aprestamiento como actividad inicial se pensó en una obra cinematográfica: La habitación de Fermat.