977 resultados para Fokker-Planck Equation
Resumo:
Electric probes are objects immersed in the plasma with sharp boundaries which collect of emit charged particles. Consequently, the nearby plasma evolves under abrupt imposed and/or naturally emerging conditions. There could be localized currents, different time scales for plasma species evolution, charge separation and absorbing-emitting walls. The traditional numerical schemes based on differences often transform these disparate boundary conditions into computational singularities. This is the case of models using advection-diffusion differential equations with source-sink terms (also called Fokker-Planck equations). These equations are used in both, fluid and kinetic descriptions, to obtain the distribution functions or the density for each plasma species close to the boundaries. We present a resolution method grounded on an integral advancing scheme by using approximate Green's functions, also called short-time propagators. All the integrals, as a path integration process, are numerically calculated, what states a robust grid-free computational integral method, which is unconditionally stable for any time step. Hence, the sharp boundary conditions, as the current emission from a wall, can be treated during the short-time regime providing solutions that works as if they were known for each time step analytically. The form of the propagator (typically a multivariate Gaussian) is not unique and it can be adjusted during the advancing scheme to preserve the conserved quantities of the problem. The effects of the electric or magnetic fields can be incorporated into the iterative algorithm. The method allows smooth transitions of the evolving solutions even when abrupt discontinuities are present. In this work it is proposed a procedure to incorporate, for the very first time, the boundary conditions in the numerical integral scheme. This numerical scheme is applied to model the plasma bulk interaction with a charge-emitting electrode, dealing with fluid diffusion equations combined with Poisson equation self-consistently. It has been checked the stability of this computational method under any number of iterations, even for advancing in time electrons and ions having different time scales. This work establishes the basis to deal in future work with problems related to plasma thrusters or emissive probes in electromagnetic fields.
Resumo:
We present a stochastic agent-based model for the distribution of personal incomes in a developing economy. We start with the assumption that incomes are determined both by individual labour and by stochastic effects of trading and investment. The income from personal effort alone is distributed about a mean, while the income from trade, which may be positive or negative, is proportional to the trader's income. These assumptions lead to a Langevin model with multiplicative noise, from which we derive a Fokker-Planck (FP) equation for the income probability density function (IPDF) and its variation in time. We find that high earners have a power law income distribution while the low-income groups have a Levy IPDF. Comparing our analysis with the Indian survey data (obtained from the world bank website: http://go.worldbank.org/SWGZB45DN0) taken over many years we obtain a near-perfect data collapse onto our model's equilibrium IPDF. Using survey data to relate the IPDF to actual food consumption we define a poverty index (Sen A. K., Econometrica., 44 (1976) 219; Kakwani N. C., Econometrica, 48 (1980) 437), which is consistent with traditional indices, but independent of an arbitrarily chosen "poverty line" and therefore less susceptible to manipulation. Copyright © EPLA, 2010.
Resumo:
The dynamics of intracellular Ca²⁺ is driven by random events called Ca²⁺ puffs, in which Ca²⁺ is liberated from intracellular stores. We show that the emergence of Ca²⁺ puffs can be mapped to an escape process. The mean first passage times that correspond to the stochastic fraction of puff periods are computed from a novel master equation and two Fokker-Planck equations. Our results demonstrate that the mathematical modeling of Ca²⁺ puffs has to account for the discrete character of the Ca²⁺ release sites and does not permit a continuous description of the number of open channels.
Resumo:
Nonlinear Noisy Leaky Integrate and Fire (NNLIF) models for neurons networks can be written as Fokker-Planck-Kolmogorov equations on the probability density of neurons, the main parameters in the model being the connectivity of the network and the noise. We analyse several aspects of the NNLIF model: the number of steady states, a priori estimates, blow-up issues and convergence toward equilibrium in the linear case. In particular, for excitatory networks, blow-up always occurs for initial data concentrated close to the firing potential. These results show how critical is the balance between noise and excitatory/inhibitory interactions to the connectivity parameter.
Resumo:
We extend the partial resummation technique of Fokker-Planck terms for multivariable stochastic differential equations with colored noise. As an example, a model system of a Brownian particle with colored noise is studied. We prove that the asymmetric behavior found in analog simulations is due to higher-order terms which are left out in that technique. On the contrary, the systematic ¿-expansion approach can explain the analog results.
Resumo:
Radial transport in the tokamap, which has been proposed as a simple model for the motion in a stochastic plasma, is investigated. A theory for previous numerical findings is presented. The new results are stimulated by the fact that the radial diffusion coefficients is space-dependent. The space-dependence of the transport coefficient has several interesting effects which have not been elucidated so far. Among the new findings are the analytical predictions for the scaling of the mean radial displacement with time and the relation between the Fokker-Planck diffusion coefficient and the diffusion coefficient from the mean square displacement. The applicability to other systems is also discussed. (c) 2009 WILEY-VCH GmbH & Co. KGaA, Weinheim
Resumo:
We examine bivariate extensions of Aït-Sahalia’s approach to the estimation of univariate diffusions. Our message is that extending his idea to a bivariate setting is not straightforward. In higher dimensions, as opposed to the univariate case, the elements of the Itô and Fokker-Planck representations do not coincide; and, even imposing sensible assumptions on the marginal drifts and volatilities is not sufficient to obtain direct generalisations. We develop exploratory estimation and testing procedures, by parametrizing the drifts of both component processes and setting restrictions on the terms of either the Itô or the Fokker-Planck covariance matrices. This may lead to highly nonlinear ordinary differential equations, where the definition of boundary conditions is crucial. For the methods developed, the Fokker-Planck representation seems more tractable than the Itô’s. Questions for further research include the design of regularity conditions on the time series dependence in the data, the kernels actually used and the bandwidths, to obtain asymptotic properties for the estimators proposed. A particular case seems promising: “causal bivariate models” in which only one of the diffusions contributes to the volatility of the other. Hedging strategies which estimate separately the univariate diffusions at stake may thus be improved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Die Nichtlineare Dynamik verallgemeinert Aussagen über dynamische Systeme durch Abstraktion von konkreten Systemen. In der Technik sind Maschinen dagegen sehr konkret und die Behandlung auftretender Probleme mit Methoden der theoretischen Physik ist nicht trivial. Diese Arbeit versucht einige der Schwierigkeiten einer technischen Anwendung der nichtlinearen Theorie zu lokalisieren. Am Beispiel von vier Klassen von Modellansätzen, werden Anwendungsschnittstellen beleuchtet und systematisiert. Die Anwendung von Modellen, die explizit auf bekannten physikalischen Gesetzmäßigkeiten aufbauen, findet Grenzen in der Anzahl der Freiheitsgrade und den Nebenbedingungen konkreter Systeme. Solche Modelle liefern jedoch wichtige Hinweise auf die Vielfalt der nichtlinearen Phänomene und tragen zu ihrem Verständnis bei. Daher sind sie für die Konstruktionspraxis wichtig. Es werden typisch nichtlineare Phänomene und ihre zugrundeliegenden Mechanismen vorgestellt und klassifiziert, sowie grundsätzliche Probleme der Berechenbarkeit analytisch formulierter Modelle betrachtet. Eine zweite Schnittstelle bieten die Darstellungen des Systemverhaltens als überlagerung spezieller Funktionen, diez.B. Symmetrieeigenschaften des betrachteten Systems besonders deutlich widerspiegeln. Gegenüber der klassischen Fourierzerlegung nach Frequenz und Phase bringt die Analyse nach Detaillierungsgrad und Position von Waveletfunktionen wichtige Vorteile für die nichtlineare zustandsraumbasierte Datenanalyse. Viele Verfahren der Nichtlinearen Datenanalyse beruhen auf metrischen Eigenschaften der dynamischen Systeme. Als dritte Gruppe werden demgegenüber topologische Methoden beleuchtet. Die Konstruktion von Simplexen aus Zeitreihen mittels der Zeitversatzmethode ist die Grundlage für eine Triangulation der Zustandsräume. Die Methoden, z.B. Templateverfahren, die auf der Einbettung von eindimensionalen Trajektorien in den R^3 basieren, lassen sich hingegen nicht einfach auf hochdimensionale Zustandsmannigfaltigkeiten anwenden. Schließlich werden stochastische Aspekte behandelt. Schwankungen des Systemverhaltens können auf Schwankungen der Anfangswerte und/oder auf Schwankungen der eigentlichen Systemdynamik beruhen. Die Einordnung des konkreten Anwendungsfalles setzt jedoch ein sicheres Verständnis stochastischer Prozesse voraus. Am Beispiel der Rekonstruktion der stochastischen Dynamik über eine eindimensionale Fokker-Planck-Gleichung zeigen sich deutlich die praktischen Grenzen solcher Ansätze.
Resumo:
In questa tesi viene presentato il metodo della parametrice, che è utilizzato per trovare la soluzione fondamentale di un operatore parabolico a coefficienti hölderiani. Inizialmente si introduce un operatore modello a coefficienti costanti, la cui soluzione fondamentale verrà utilizzata per approssimare quella dell’operatore parabolico. Questa verrà trovata esplicitamente sotto forma di serie di operatori di convoluzione con la soluzione fondamentale dell’operatore a coefficienti costanti. La prova di convergenza e regolarità della serie si basa sullo studio delle proprietà della soluzione fondamentale dell’operatore a coefficienti costanti e degli operatori di convoluzione utilizzati. Infine, si applicherà il metodo della parametrice per trovare la soluzione fondamentale di un’equazione di Fokker-Planck sempre a coefficienti hölderiani.
Resumo:
In questa tesi si studia l'angiogenesi tumorale, dapprima descrivendo i fenomeni biologici alla base della dinamica cellulare, e successivamente, dopo aver introdotto gli strumenti matematici necessari, sviluppandone un modello seguendo la letteratura esistente basato sulle equazioni differenziali stocastiche e su quelle di Fokker-Planck. Ne vengono infine realizzate simulazioni numeriche.
Resumo:
Il testo contiene nozioni base di probabilità necessarie per introdurre i processi stocastici. Sono trattati infatti nel secondo capitolo i processi Gaussiani, di Markov e di Wiener, l'integrazione stocastica alla Ito, e le equazioni differenziali stocastiche. Nel terzo capitolo viene introdotto il rapporto tra la genetica e la matematica, dove si introduce l'evoluzione la selezione naturale, e altri fattori che portano al cambiamento di una popolazione; vengono anche formulate le leggi basilari per una modellizzazione dell’evoluzione fenotipica. Successivamente si entra più nel dettaglio, e si determina un modello stocastico per le mutazioni, cioè un modello che riesca ad approssimare gli effetti dei fattori di fluttuazione all'interno del processo evolutivo.
Resumo:
The interaction of high intensity X-ray lasers with matter is modeled. A collisional-radiative timedependent module is implemented to study radiation transport in matter from ultrashort and ultraintense X-ray bursts. Inverse bremsstrahlung absorption by free electrons, electron conduction or hydrodynamic effects are not considered. The collisional-radiative system is coupled with the electron distribution evolution treated with a Fokker-Planck approach with additional inelastic terms. The model includes spontaneous emission, resonant photoabsorption, collisional excitation and de-excitation, radiative recombination, photoionization, collisional ionization, three-body recombination, autoionization and dielectronic capture. It is found that for high densities, but still below solid, collisions play an important role and thermalization times are not short enough to ensure a thermal electron distribution. At these densities Maxwellian and non-Maxwellian electron distribution models yield substantial differences in collisional rates, modifying the atomic population dynamics.
Resumo:
We investigate the feasibility of simultaneous suppressing of the amplification noise and nonlinearity, representing the most fundamental limiting factors in modern optical communication. To accomplish this task we developed a general design optimisation technique, based on concepts of noise and nonlinearity management. We demonstrate the immense efficiency of the novel approach by applying it to a design optimisation of transmission lines with periodic dispersion compensation using Raman and hybrid Raman-EDFA amplification. Moreover, we showed, using nonlinearity management considerations, that the optimal performance in high bit-rate dispersion managed fibre systems with hybrid amplification is achieved for a certain amplifier spacing – which is different from commonly known optimal noise performance corresponding to fully distributed amplification. Required for an accurate estimation of the bit error rate, the complete knowledge of signal statistics is crucial for modern transmission links with strong inherent nonlinearity. Therefore, we implemented the advanced multicanonical Monte Carlo (MMC) method, acknowledged for its efficiency in estimating distribution tails. We have accurately computed acknowledged for its efficiency in estimating distribution tails. We have accurately computed marginal probability density functions for soliton parameters, by numerical modelling of Fokker-Plank equation applying the MMC simulation technique. Moreover, applying a powerful MMC method we have studied the BER penalty caused by deviations from the optimal decision level in systems employing in-line 2R optical regeneration. We have demonstrated that in such systems the analytical linear approximation that makes a better fit in the central part of the regenerator nonlinear transfer function produces more accurate approximation of the BER and BER penalty. We present a statistical analysis of RZ-DPSK optical signal at direct detection receiver with Mach-Zehnder interferometer demodulation
Resumo:
The dynamical evolution of dislocations in plastically deformed metals is controlled by both deterministic factors arising out of applied loads and stochastic effects appearing due to fluctuations of internal stress. Such type of stochastic dislocation processes and the associated spatially inhomogeneous modes lead to randomness in the observed deformation structure. Previous studies have analyzed the role of randomness in such textural evolution but none of these models have considered the impact of a finite decay time (all previous models assumed instantaneous relaxation which is "unphysical") of the stochastic perturbations in the overall dynamics of the system. The present article bridges this knowledge gap by introducing a colored noise in the form of an Ornstein-Uhlenbeck noise in the analysis of a class of linear and nonlinear Wiener and Ornstein-Uhlenbeck processes that these structural dislocation dynamics could be mapped on to. Based on an analysis of the relevant Fokker-Planck model, our results show that linear Wiener processes remain unaffected by the second time scale in the problem but all nonlinear processes, both Wiener type and Ornstein-Uhlenbeck type, scale as a function of the noise decay time τ. The results are expected to ramify existing experimental observations and inspire new numerical and laboratory tests to gain further insight into the competition between deterministic and random effects in modeling plastically deformed samples.