953 resultados para Filtro de Kalman-Bucy
Resumo:
This work presents the localization and path planning systems for two robots: a non-instrumented humanoid and a slave wheeled robot. The localization of wheeled robot is made using odometry information and landmark detection. These informations are fused using a Extended Kalman Filter. The relative position of humanoid is acquired fusing (using another Kalman Filter) the wheeled robot pose with the characteristics of the landmark on the back of humanoid. Knowing the wheeled robot position and the humanoid relative position in relation to it, we acquired the absolute position of humanoid. The path planning system was developed to provide the cooperative movement of the two robots,incorporating the visibility restrictions of the robotic system
Resumo:
This work presents a cooperative navigation systemof a humanoid robot and a wheeled robot using visual information, aiming to navigate the non-instrumented humanoid robot using information obtained from the instrumented wheeled robot. Despite the humanoid not having sensors to its navigation, it can be remotely controlled by infra-red signals. Thus, the wheeled robot can control the humanoid positioning itself behind him and, through visual information, find it and navigate it. The location of the wheeled robot is obtained merging information from odometers and from landmarks detection, using the Extended Kalman Filter. The marks are visually detected, and their features are extracted by image processing. Parameters obtained by image processing are directly used in the Extended Kalman Filter. Thus, while the wheeled robot locates and navigates the humanoid, it also simultaneously calculates its own location and maps the environment (SLAM). The navigation is done through heuristic algorithms based on errors between the actual and desired pose for each robot. The main contribution of this work was the implementation of a cooperative navigation system for two robots based on visual information, which can be extended to other robotic applications, as the ability to control robots without interfering on its hardware, or attaching communication devices
Resumo:
In this Thesis, the development of the dynamic model of multirotor unmanned aerial vehicle with vertical takeoff and landing characteristics, considering input nonlinearities and a full state robust backstepping controller are presented. The dynamic model is expressed using the Newton-Euler laws, aiming to obtain a better mathematical representation of the mechanical system for system analysis and control design, not only when it is hovering, but also when it is taking-off, or landing, or flying to perform a task. The input nonlinearities are the deadzone and saturation, where the gravitational effect and the inherent physical constrains of the rotors are related and addressed. The experimental multirotor aerial vehicle is equipped with an inertial measurement unit and a sonar sensor, which appropriately provides measurements of attitude and altitude. A real-time attitude estimation scheme based on the extended Kalman filter using quaternions was developed. Then, for robustness analysis, sensors were modeled as the ideal value with addition of an unknown bias and unknown white noise. The bounded robust attitude/altitude controller were derived based on globally uniformly practically asymptotically stable for real systems, that remains globally uniformly asymptotically stable if and only if their solutions are globally uniformly bounded, dealing with convergence and stability into a ball of the state space with non-null radius, under some assumptions. The Lyapunov analysis technique was used to prove the stability of the closed-loop system, compute bounds on control gains and guaranteeing desired bounds on attitude dynamics tracking errors in the presence of measurement disturbances. The controller laws were tested in numerical simulations and in an experimental hexarotor, developed at the UFRN Robotics Laboratory
Resumo:
The development and refinement of techniques that make simultaneous localization and mapping (SLAM) for an autonomous mobile robot and the building of local 3-D maps from a sequence of images, is widely studied in scientific circles. This work presents a monocular visual SLAM technique based on extended Kalman filter, which uses features found in a sequence of images using the SURF descriptor (Speeded Up Robust Features) and determines which features can be used as marks by a technique based on delayed initialization from 3-D straight lines. For this, only the coordinates of the features found in the image and the intrinsic and extrinsic camera parameters are avaliable. Its possible to determine the position of the marks only on the availability of information of depth. Tests have shown that during the route, the mobile robot detects the presence of characteristics in the images and through a proposed technique for delayed initialization of marks, adds new marks to the state vector of the extended Kalman filter (EKF), after estimating the depth of features. With the estimated position of the marks, it was possible to estimate the updated position of the robot at each step, obtaining good results that demonstrate the effectiveness of monocular visual SLAM system proposed in this paper
Resumo:
This work intends to show a new and few explored SLAM approach inside the simultaneous localization and mapping problem (SLAM). The purpose is to put a mobile robot to work in an indoor environment. The robot should map the environment and localize itself in the map. The robot used in the tests has an upward camera and encoders on the wheels. The landmarks in this built map are light splotches on the images of the camera caused by luminaries on the ceil. This work develops a solution based on Extended Kalman Filter to the SLAM problem using a developed observation model. Several developed tests and softwares to accomplish the SLAM experiments are shown in details
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The PhD activity described in the document is part of the Microsatellite and Microsystem Laboratory of the II Faculty of Engineering, University of Bologna. The main objective is the design and development of a GNSS receiver for the orbit determination of microsatellites in low earth orbit. The development starts from the electronic design and goes up to the implementation of the navigation algorithms, covering all the aspects that are involved in this type of applications. The use of GPS receivers for orbit determination is a consolidated application used in many space missions, but the development of the new GNSS system within few years, such as the European Galileo, the Chinese COMPASS and the Russian modernized GLONASS, proposes new challenges and offers new opportunities to increase the orbit determination performances. The evaluation of improvements coming from the new systems together with the implementation of a receiver that is compatible with at least one of the new systems, are the main activities of the PhD. The activities can be divided in three section: receiver requirements definition and prototype implementation, design and analysis of the GNSS signal tracking algorithms, and design and analysis of the navigation algorithms. The receiver prototype is based on a Virtex FPGA by Xilinx, and includes a PowerPC processor. The architecture follows the software defined radio paradigm, so most of signal processing is performed in software while only what is strictly necessary is done in hardware. The tracking algorithms are implemented as a combination of Phase Locked Loop and Frequency Locked Loop for the carrier, and Delay Locked Loop with variable bandwidth for the code. The navigation algorithm is based on the extended Kalman filter and includes an accurate LEO orbit model.
Resumo:
Procedures for quantitative walking analysis include the assessment of body segment movements within defined gait cycles. Recently, methods to track human body motion using inertial measurement units have been suggested. It is not known if these techniques can be readily transferred to clinical measurement situations. This work investigates the aspects necessary for one inertial measurement unit mounted on the lower back to track orientation, and determine spatio-temporal features of gait outside the confines of a conventional gait laboratory. Apparent limitations of different inertial sensors can be overcome by fusing data using methods such as a Kalman filter. The benefits of optimizing such a filter for the type of motion are unknown. 3D accelerations and 3D angular velocities were collected for 18 healthy subjects while treadmill walking. Optimization of Kalman filter parameters improved pitch and roll angle estimates when compared to angles derived using stereophotogrammetry. A Weighted Fourier Linear Combiner method for estimating 3D orientation angles by constructing an analytical representation of angular velocities and allowing drift free integration is also presented. When tested this method provided accurate estimates of 3D orientation when compared to stereophotogrammetry. Methods to determine spatio-temporal features from lower trunk accelerations generally require knowledge of sensor alignment. A method was developed to estimate the instants of initial and final ground contact from accelerations measured by a waist mounted inertial device without rigorous alignment. A continuous wavelet transform method was used to filter and differentiate the signal and derive estimates of initial and final contact times. The technique was tested with data recorded for both healthy and pathologic (hemiplegia and Parkinson’s disease) subjects and validated using an instrumented mat. The results show that a single inertial measurement unit can assist whole body gait assessment however further investigation is required to understand altered gait timing in some pathological subjects.