Modelagem e controle de um microveículo aéreo: uma aplicação de estabilidade robusta com a técnica backstepping em uma estrutura hexarrotor


Autoria(s): Sanca, Armando Sanca
Contribuinte(s)

Alsina, Pablo Javier

CPF:84554223515

http://lattes.cnpq.br/5293829796085823

CPF:42487455420

http://lattes.cnpq.br/3653597363789712

Santana, André Macêdo

CPF:62876392372

http://lattes.cnpq.br/5971556358191272

Dias, Anfranserai Morais

CPF:02393676422

http://lattes.cnpq.br/2522861105234810

Dórea, Carlos Eduardo Trabuco

CPF:55708245553

http://lattes.cnpq.br/0143490577842914

Cerqueira, Jés de Jesus Fiais

CPF:27558231515

http://lattes.cnpq.br/3099827700882478

Data(s)

17/12/2014

20/08/2013

17/12/2014

01/02/2013

Resumo

In this Thesis, the development of the dynamic model of multirotor unmanned aerial vehicle with vertical takeoff and landing characteristics, considering input nonlinearities and a full state robust backstepping controller are presented. The dynamic model is expressed using the Newton-Euler laws, aiming to obtain a better mathematical representation of the mechanical system for system analysis and control design, not only when it is hovering, but also when it is taking-off, or landing, or flying to perform a task. The input nonlinearities are the deadzone and saturation, where the gravitational effect and the inherent physical constrains of the rotors are related and addressed. The experimental multirotor aerial vehicle is equipped with an inertial measurement unit and a sonar sensor, which appropriately provides measurements of attitude and altitude. A real-time attitude estimation scheme based on the extended Kalman filter using quaternions was developed. Then, for robustness analysis, sensors were modeled as the ideal value with addition of an unknown bias and unknown white noise. The bounded robust attitude/altitude controller were derived based on globally uniformly practically asymptotically stable for real systems, that remains globally uniformly asymptotically stable if and only if their solutions are globally uniformly bounded, dealing with convergence and stability into a ball of the state space with non-null radius, under some assumptions. The Lyapunov analysis technique was used to prove the stability of the closed-loop system, compute bounds on control gains and guaranteeing desired bounds on attitude dynamics tracking errors in the presence of measurement disturbances. The controller laws were tested in numerical simulations and in an experimental hexarotor, developed at the UFRN Robotics Laboratory

Nesta Tese, são apresentados os desenvolvimentos da modelagem dinâmica de um veículo aéreo não tripulado multirrotor com capacidade de decolagem e pouso vertical, considerando as não linearidades de entrada e o desenvolvimento de um controlador robusto por backstepping. A formulação do modelo dinâmico é expressa usando-se as leis de Newton-Euler, visando à obtenção de uma melhor representação matemática do sistema mecânico para a análise e projeto das leis de controle, não apenas quando está pairando, como também de decolagem, de pouso, ou de voo executando uma tarefa. As não linearidades de entrada são a zona morta e a saturação, onde o efeito gravitacional e as inerentes restrições físicas dos rotores são relacionadas e abordadas. O microveículo experimental está equipado com uma unidade de medida inercial e um sonar, que devidamente instrumentada fornece as medidas da atitude e altitude. Foi desenvolvido um estimador em tempo real para atitude usando quatérnios e baseado em filtro de Kalman estendido. Para a formulação robusta do controlador, os sensores foram modelados como o valor real, que é o valor ideal com a adição de um viés e mais um ruído branco desconhecidos e limitados. Os controladores de atitude e altitude foram derivados usando-se o critério globalmente uniformemente praticamente assintoticamente estável para sistemas reais, que permanece globalmente uniformemente assintoticamente estável se e somente se suas soluções são globalmente uniformemente limitadas, lidando com a convergência e estabilidade dentro de uma região com raio não nula, levando em consideração algumas suposições como as incertezas nas medições. A técnica de análise de Lyapunov foi usada para: provar a estabilidade do sistema em malha fechada; calcular os limites dos ganhos de controle, e, obter a garantia limitada pretendida sobre o erro de rastreamento da dinâmica de atitude na presença de distúrbios nas mediçõoes. As leis de controle foram testadas em simulações numéricas e em um hexarrotor experimental, desenvolvido no Laboratório de Robótica da Universidade Federal do Rio Grande do Norte

Formato

application/pdf

Identificador

SANCA, Armando Sanca. Modelagem e controle de um microveículo aéreo: uma aplicação de estabilidade robusta com a técnica backstepping em uma estrutura hexarrotor. 2013. 135 f. Tese (Doutorado em Automação e Sistemas; Engenharia de Computação; Telecomunicações) - Universidade Federal do Rio Grande do Norte, Natal, 2013.

http://repositorio.ufrn.br:8080/jspui/handle/123456789/15220

Idioma(s)

por

Publicador

Universidade Federal do Rio Grande do Norte

BR

UFRN

Programa de Pós-Graduação em Engenharia Elétrica

Automação e Sistemas; Engenharia de Computação; Telecomunicações

Direitos

Acesso Aberto

Palavras-Chave #Hexarrotor. Modelagem Dinâmica. Controle robusto por backstepping. Estimação de atitude por FKE #Hexarotor. Dynamic modeling. Robust backstepping control. EKF Attitude Estimation #CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Tipo

Tese