894 resultados para Fetal Hemoglobin
Resumo:
The Foetal Alcohol Syndrome has long gone unrecognised and undiagnosed in Australia. In the last few years of the 21st Century (2010-14) health practitioners are finally seeking ways of diagnosing the effects of alcohol in pregnancy on the next generation. The author offers a power point presentation which gives guidance on making an accurate diagnosis.
Resumo:
The MFG test is a family-based association test that detects genetic effects contributing to disease in offspring, including offspring allelic effects, maternal allelic effects and MFG incompatibility effects. Like many other family-based association tests, it assumes that the offspring survival and the offspring-parent genotypes are conditionally independent provided the offspring is affected. However, when the putative disease-increasing locus can affect another competing phenotype, for example, offspring viability, the conditional independence assumption fails and these tests could lead to incorrect conclusions regarding the role of the gene in disease. We propose the v-MFG test to adjust for the genetic effects on one phenotype, e.g., viability, when testing the effects of that locus on another phenotype, e.g., disease. Using genotype data from nuclear families containing parents and at least one affected offspring, the v-MFG test models the distribution of family genotypes conditional on offspring phenotypes. It simultaneously estimates genetic effects on two phenotypes, viability and disease. Simulations show that the v-MFG test produces accurate genetic effect estimates on disease as well as on viability under several different scenarios. It generates accurate type-I error rates and provides adequate power with moderate sample sizes to detect genetic effects on disease risk when viability is reduced. We demonstrate the v-MFG test with HLA-DRB1 data from study participants with rheumatoid arthritis (RA) and their parents, we show that the v-MFG test successfully detects an MFG incompatibility effect on RA while simultaneously adjusting for a possible viability loss.
Resumo:
Among the human diseases that result from chromosomal aberrations, a de novo deletion in chromosome 11p13 is clinically associated with a syndrome characterized by Wilms' tumor, aniridia, genitourinary anomalies, and mental retardation (WAGR). Not all genes in the deleted region have been characterized biochemically or functionally. We have recently identified the first Class III cyclic nucleotide phosphodiesterase, Rv0805, from Mycobacterium tuberculosis, which biochemically and structurally belongs to the superfamily of metallophosphoesterases. We performed a large scale bioinformatic analysis to identify orthologs of the Rv0805 protein and identified many eukaryotic genes that included the human 239FB gene present in the region deleted in the WAGR syndrome. We report here the first detailed biochemical characterization of the rat 239FB protein and show that it possesses metallophosphodiesterase activity. Extensive mutational analysis identified residues that are involved in metal interaction at the binuclear metal center. Generation of a rat 239FB protein with a mutation corresponding to a single nucleotide polymorphism seen in human 239FB led to complete inactivation of the protein. A close ortholog of 239FB is found in adult tissues, and biochemical characterization of the 239AB protein demonstrated significant hydrolytic activity against 2',3'-cAMP, thus representing the first evidence for a Class III cyclic nucleotide phosphodiesterase in mammals. Highly conserved orthologs of the 239FB protein are found in Caenorhabditis elegans and Drosophila and, coupled with available evidence suggesting that 239FB is a tumor suppressor, indicate the important role this protein must play in diverse cellular events.
Resumo:
The ontogeny of muscarinic receptors was studied in human fetal striatum, brainstem, and cerebellum to investigate general principles of synaptogenesis as well as the physiological balance between various chemical synapses during development in a given region of the brain. [3H]Quinuclidinyl benzilate ([-'H]QNB) binding was assayed in total particulate fraction (TPF) from various parts of brain. In the corpus striatum, QNB binding sites are present at 16 weeks of gestation (average concentration 180 fmol/mg protein of TPF), slowly increase up to 24 weeks (average concentration 217 fmol/mg protein), and rapidly increase during the third trimester to 480 fmol/mg protein of TPF. In contrast, dopaminergic receptors exist as two subpopulations. one with low affinity and the other with high affinity up to the 24th week of gestation; all of them acquire the highaffinity characteristic during the third trimester. In brainstem, the muscarinic receptors show maximum concentration by 16 weeks of age (360 fmolimg protein of TPF). Subsequently the muscarinic receptor concentration shows a gradual decline in the brainstem. In cerebellum, except for a slight increase at 24 weeks (average concentration 90 fmol/mg protein of TPF), the receptor concentration remained nearly constant at about 60-70 fmolimg protein of TPF throughout fetal life. This study demonstrates that the ontogeny of muscarinic receptors varies among the different regions, and the patterns observed suggest that receptor formation occurs principally in the third trimester. Also noteworthy is the finding that the QNB binding sites decreased in all regions of the human brain during adult life. Key Words: Cholinergic muscarinic receptors-Quinuclidinyl benzilate-Corpus striaturn-Brainstem-Cerebellum. Ravikumar B. V. and Sastry P. S. Cholinergic muscarinic receptors in human fetal brain: Ontogeny of [3H]quinuclidinyl benzilate binding sites in corpus striatum, brainstem, and cerebellum. J. Neurochem. 45, 1948- 1950 (1985).
Resumo:
Hip height, body condition, subcutaneous fat, eye muscle area, percentage Bos taurus, fetal age and diet digestibility data were collected at 17 372 assessments on 2181 Brahman and tropical composite (average 28% Brahman) female cattle aged between 0.5 and 7.5 years of age at five sites across Queensland. The study validated the subtraction of previously published estimates of gravid uterine weight to correct liveweight to the non-pregnant status. Hip height and liveweight were linearly related (Brahman: P<0.001, R-2 = 58%; tropical composite P<0.001, R-2 = 67%). Liveweight varied by 12-14% per body condition score (5-point scale) as cows differed from moderate condition (P<0.01). Parallel effects were also found due to subcutaneous rump fat depth and eye muscle area, which were highly correlated with each other and body condition score (r = 0.7-0.8). Liveweight differed from average by 1.65-1.66% per mm of rump fat depth and 0.71-0.76% per cm(2) of eye muscle area (P<0.01). Estimated dry matter digestibility of pasture consumed had no consistent effect in predicting liveweight and was therefore excluded from final models. A method developed to estimate full liveweight of post-weaning age female beef cattle from the other measures taken predicted liveweight to within 10 and 23% of that recorded for 65 and 95% of cases, respectively. For a 95% chance of predicted group average liveweight (body condition score used) being within 5, 4, 3, 2 and 1% of actual group average liveweight required 23, 36, 62, 137 and 521 females, respectively, if precision and accuracy of measurements matches that used in the research. Non-pregnant Bos taurus female cattle were calculated to be 10-40% heavier than Brahmans at the same hip height and body condition, indicating a substantial conformational difference. The liveweight prediction method was applied to a validation population of 83 unrelated groups of cattle weighed in extensive commercial situations on 119 days over 18 months (20 917 assessments). Liveweight prediction in the validation population exceeded average recorded liveweight for weigh groups by an average of 19 kg (similar to 6%) demonstrating the difficulty of achieving accurate and precise animal measurements under extensive commercial grazing conditions.
Resumo:
We determined the association of cord blood 25-hydroxyvitamin D [25(OH)D] with birth weight and the risk of small for gestational age (SGA). As part of the China-Anhui Birth Cohort (C-ABC) study, we measured cord blood levels of 25(OH)D in 1491 neonates in Hefei, China. The data on maternal sociodemographic characteristics, health status, lifestyle, birth outcomes were prospectively collected. Multiple regression models were used to estimate the association of 25(OH)D levels with birth weight and the risk of SGA. Compared with neonates in the lowest decile of cord blood 25(OH)D levels, neonates in four deciles (the fourth, fifth, sixth and seventh deciles) had significantly increased birth weight and decreased risk of SGA. Multiple linear regression models showed that per 10 nmol/L increase in cord blood 25(OH)D, birth weight increased by 61.0 g (95% CI: 31.9, 89.9) at concentrations less than 40 nmol/L, and then decreased by 68.5 g (95% CI: −110.5, −26.6) at concentrations from 40 to 70 nmol/L. This study provides the first epidemiological evidence that there was an inverted U shaped relationship between neonatal vitamin D status and fetal growth, and the risk of SGA reduced at moderate concentration.
Resumo:
Investigations on the structure and function of hemoglobin (Hb) confined inside sol-gel template synthesized silica nanotubes (SNTs) have been discussed here. Immobilization of hemoglobin inside SNTs resulted in the enhancement of direct electron transfer during an electrochemical reaction. Extent of influence of nanoconfinement on protein activity is further probed via ligand binding and thermal stability studies. Electrochemical investigations show reversible binding of n-donor liquid ligands, such as pyridine and its derivatives, and predictive variation in their redox potentials suggests an absence of any adverse effect on the structure and function of Hb confined inside nanometer-sized channels of SNTs. Immobilization also resulted in enhanced thermal stability of Hb. The melting or denaturation temperature of Hb immobilized inside SNTs increase by approximately 4 degrees C as compared with that of free Hb in solution.
Resumo:
The continuous production of blood cells, a process termed hematopoiesis, is sustained throughout the lifetime of an individual by a relatively small population of cells known as hematopoietic stem cells (HSCs). HSCs are unique cells characterized by their ability to self-renew and give rise to all types of mature blood cells. Given their high proliferative potential, HSCs need to be tightly regulated on the cellular and molecular levels or could otherwise turn malignant. On the other hand, the tight regulatory control of HSC function also translates into difficulties in culturing and expanding HSCs in vitro. In fact, it is currently not possible to maintain or expand HSCs ex vivo without rapid loss of self-renewal. Increased knowledge of the unique features of important HSC niches and of key transcriptional regulatory programs that govern HSC behavior is thus needed. Additional insight in the mechanisms of stem cell formation could enable us to recapitulate the processes of HSC formation and self-renewal/expansion ex vivo with the ultimate goal of creating an unlimited supply of HSCs from e.g. human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPS) to be used in therapy. We thus asked: How are hematopoietic stem cells formed and in what cellular niches does this happen (Papers I, II)? What are the molecular mechanisms that govern hematopoietic stem cell development and differentiation (Papers III, IV)? Importantly, we could show that placenta is a major fetal hematopoietic niche that harbors a large number of HSCs during midgestation (Paper I)(Gekas et al., 2005). In order to address whether the HSCs found in placenta were formed there we utilized the Runx1-LacZ knock-in and Ncx1 knockout mouse models (Paper II). Importantly, we could show that HSCs emerge de novo in the placental vasculature in the absence of circulation (Rhodes et al., 2008). Furthermore, we could identify defined microenvironmental niches within the placenta with distinct roles in hematopoiesis: the large vessels of the chorioallantoic mesenchyme serve as sites of HSC generation whereas the placental labyrinth is a niche supporting HSC expansion (Rhodes et al., 2008). Overall, these studies illustrate the importance of distinct milieus in the emergence and subsequent maturation of HSCs. To ensure proper function of HSCs several regulatory mechanisms are in place. The microenvironment in which HSCs reside provides soluble factors and cell-cell interactions. In the cell-nucleus, these cell-extrinsic cues are interpreted in the context of cell-intrinsic developmental programs which are governed by transcription factors. An essential transcription factor for initiation of hematopoiesis is Scl/Tal1 (stem cell leukemia gene/T-cell acute leukemia gene 1). Loss of Scl results in early embryonic death and total lack of all blood cells, yet deactivation of Scl in the adult does not affect HSC function (Mikkola et al., 2003b. In order to define the temporal window of Scl requirement during fetal hematopoietic development, we deactivated Scl in all hematopoietic lineages shortly after hematopoietic specification in the embryo . Interestingly, maturation, expansion and function of fetal HSCs was unaffected, and, as in the adult, red blood cell and platelet differentiation was impaired (Paper III)(Schlaeger et al., 2005). These findings highlight that, once specified, the hematopoietic fate is stable even in the absence of Scl and is maintained through mechanisms that are distinct from those required for the initial fate choice. As the critical downstream targets of Scl remain unknown, we sought to identify and characterize target genes of Scl (Paper IV). We could identify transcription factor Mef2C (myocyte enhancer factor 2 C) as a novel direct target gene of Scl specifically in the megakaryocyte lineage which largely explains the megakaryocyte defect observed in Scl deficient mice. In addition, we observed an Scl-independent requirement of Mef2C in the B-cell compartment, as loss of Mef2C leads to accelerated B-cell aging (Gekas et al. Submitted). Taken together, these studies identify key extracellular microenvironments and intracellular transcriptional regulators that dictate different stages of HSC development, from emergence to lineage choice to aging.
Resumo:
Background: Both maternal and fetal complications are increased in diabetic pregnancies. Although hypertensive complications are increased in pregnant women with pregestational diabetes, reports on hypertensive complications in women with gestational diabetes mellitus (GDM) have been contradictory. Congenital malformations and macrosomia are the main fetal complications in Type 1 diabetic pregnancies, whereas fetal macrosomia and birth trauma but not congenital malformations are increased in GDM pregnancies. Aims: To study the frequency of hypertensive disorders in gestational diabetes mellitus. To evaluate the risk of macrosomia and brachial plexus injury (Erb’s palsy) and the ability of the 2-hour glucose tolerance test (OGTT) combined with the 24-hour glucose profile to distinguish between low and high risks of fetal macrosomia among women with GDM. To evaluate the relationship between glycemic control and the risk of fetal malformations in pregnancies complicated by Type 1 diabetes mellitus. To assess the effect of glycemic control on the occurrence of preeclampsia and pregnancy-induced hypertension in Type 1 diabetic pregnancies. Subjects: A total of 986 women with GDM and 203 women with borderline glucose intolerance (one abnormal value in the OGTT) with a singleton pregancy, 488 pregnant women with Type 1 diabetes (691 pregnancies and 709 offspring), and 1154 pregnant non-diabetic women (1181 pregnancies and 1187 offspring) were investigated. Results: In a prospective study on 81 GDM patients the combined frequency of preeclampsia and PIH was higher than in 327 non-diabetic controls (19.8% vs 6.1%, p<0.001). On the other hand, in 203 women with only one abnormal value in the OGTT, the rate of hypertensive complications did not differ from that of the controls. Both GDM women and those with only one abnormal value in the OGTT had higher pre-pregnancy weights and BMIs than the controls. In a retrospective study involving 385 insulin-treated and 520 diet-treated GDM patients, and 805 non-diabetic control pregnant women, fetal macrosomia occurred more often in the insulin-treated GDM pregnancies (18.2%, p<0.001) than in the diet-treated GDM pregnancies (4.4%), or the control pregnancies (2.2%). The rate of Erb’s palsy in vaginally delivered infants was 2.7% in the insulin-treated group of women and 2.4% in the diet-treated women compared with 0.3% in the controls (p<0.001). The cesarean section rate was more than twice as high (42.3% vs 18.6%) in the insulin-treated GDM patients as in the controls. A major fetal malformation was observed in 30 (4.2%) of the 709 newborn infants in Type 1 diabetic pregnancies and in 10 (1.4%) of the 735 controls (RR 3.1, 95% CI 1.6–6.2). Even women whose levels of HbA1c (normal values less than 5.6%) were only slightly increased in early pregnancy (between 5.6 and 6.8%) had a relative risk of fetal malformation of 3.0 (95% CI 1.2–7.5). Only diabetic patients with a normal HbA1c level (<5.6%) in early pregnancy had the same low risk of fetal malformations as the controls. Preeclampsia was diagnosed in 12.8% and PIH in 11.4% of the 616 Type 1 diabetic women without diabetic nephropathy. The corresponding frequencies among the 854 control women were 2.7% (OR 5.2; 95% CI 3.3–8.4) for preeclampsia and 5.6% (OR 2.2, 95% CI 1.5–3.1) for PIH. Multiple logistic regression analysis indicated that glycemic control, nulliparity, diabetic retinopathy and duration of diabetes were statistically significant independent predictors of preeclampsia. The adjusted odds ratios for preeclampsia were 1.6 (95% CI 1.3–2.0) for each 1%-unit increment in the HbA1c value during the first trimester and 0.6 (95% CI 0.5–0.8) for each 1%-unit decrement during the first half of pregnancy. In contrast, changes in glycemic control during the second half of pregnancy did not alter the risk of preeclampsia. Conclusions: In type 1 diabetic pregnancies it is extremely important to achieve optimal glycemic control before pregnancy and maintain it throughout pregnancy in order to decrease the complication rates both in the mother and in her offspring. The rate of fetal macrosomia and birth trauma in GDM pregnancies, especially in the group of insulin-treated women, is still relatively high. New strategies for screening, diagnosing, and treatment of GDM must be developed in order to decrease fetal and neonatal complications.
Resumo:
A reaction of N-bromosuccinimide with the heme groups of hemoglobin has been studied spectrophotometrically. The reaction brings about the disappearance of characteristic absorption peaks of hemoglobin and is accompanied by the release of inorganic iron from the heme groups. Urea is obligatory for the reaction to take place at pH 4.0, while it can occur in the absence of urea at pH 7.0. The spectrum of hemoglobin which does not show any peak in the Soret region at pH 4.0 is “normalized” in the presence of urea or sucrose at the same pH. The effect of “normalization” in 8 M urea is apparent over the pH range 3.0–4.5. From the obligatory requirement of urea and sucrose for “normalization” of spectrum and the dependence of the release of inorganic iron on the concentration of urea, it is suggested that heme groups are “buried” within the globin at pH 4.0 and not dissociated from globin as supposed before.
Resumo:
This study identified the molecular defects underlying three lethal fetal syndromes. Lethal Congenital Contracture Syndrome 1 (LCCS1, MIM 253310) and Lethal Arthrogryposis with Anterior Horn Cell Disease (LAAHD, MIM 611890) are fetal motor neuron diseases. They affect the nerve cells that control voluntary muscle movement, and eventually result in severe atrophy of spinal cord motor neurons and fetal immobility. Both LCCS1 and LAAHD are caused by mutations in the GLE1 gene, which encodes for a multifunctional protein involved in posttranscriptional mRNA processing. LCCS2 and LCCS3, two syndromes that are clinically similar to LCCS1, are caused by defective proteins involved in the synthesis of inositol hexakisphosphate (IP6), an essential cofactor of GLE1. This suggests a common mechanism behind these fetal motor neuron diseases, and along with accumulating evidence from genetic studies of more late-onset motor neuron diseases such as Spinal muscular atrophy (SMA) and Amyotrophic lateral sclerosis (ALS), implicates mRNA processing as a common mechanism in motor neuron disease pathogenesis. We also studied gle1-/- zebrafish in order to investigate whether they would be a good model for studying the pathogenesis of LCCS1 and LAAHD. Mutant zebrafish exhibit cell death in their central nervous system at two days post fertilization, and the distribution of mRNA within the cells of mutant zebrafish differs from controls, encouraging further studies. The third lethal fetal syndrome is described in this study for the first time. Cocoon syndrome (MIM 613630) was discovered in a Finnish family with two affected individuals. Its hallmarks are the encasement of the limbs under the skin, and severe craniofacial abnormalities, including the lack of skull bones. We showed that Cocoon syndrome is caused by a mutation in the gene encoding the conserved helix-loop-helix ubiquitous kinase CHUK, also known as IκB kinase α (IKKα). The mutation results in the complete lack of CHUK protein expression. CHUK is a subunit of the IκB kinase enzyme that inhibits NF-κB transcription factors, but in addition, it has an essential, independent role in controlling keratinocyte differentiation, as well as informing morphogenetic events such as limb and skeletal patterning. CHUK also acts as a tumor suppressor, and is frequently inactivated in cancer. This study has brought significant new information about the molecular background of these three lethal fetal syndromes, as well as provided knowledge about the prerequisites of normal human development.
Resumo:
The whole-cell voltage clamp technique was used to record potassium currents in mouse fetal hypothalamic neurons developing in culture medium from days 1 to 17. The neurons were derived from fetuses of IOPS/OF1 mice on the 14th day of gestation. The mature neurons (>six days in culture) showed both a transient potassium current and a non-inactivating delayed rectifier potassium current. These were identified pharmacologically by using the potassium channel blockers tetraethyl ammonium chloride and 4-aminopyridine, and on the basis of their kinetics and voltage sensitivities. The delayed rectifier potassium current had a threshold of −20 mV, a slow time-course of activation, and was sustained during the voltage pulse. The 4-aminopyridine-sensitive current was transient, and was activated from a holding potential more negative (−80 mV) than that required for evoking the delayed rectifier potassium current (−40 mV). The delayed rectifier potassium current was detectable from day 1 onwards, while the transient potassium current showed a distinct developmental trend. The time-constant of inactivation became faster with age in culture. The half steady-state inactivation potential showed a shift towards less negative membrane potentials with age, and the relationship was best described by a logarithmic regression equation.The developmental trend of the transient potassium current may relate functionally to the progressive morphological changes, and the appearance of synaptic connections during ontogenesis.