991 resultados para Expansion tests
Resumo:
Most statistical methods use hypothesis testing. Analysis of variance, regression, discrete choice models, contingency tables, and other analysis methods commonly used in transportation research share hypothesis testing as the means of making inferences about the population of interest. Despite the fact that hypothesis testing has been a cornerstone of empirical research for many years, various aspects of hypothesis tests commonly are incorrectly applied, misinterpreted, and ignored—by novices and expert researchers alike. On initial glance, hypothesis testing appears straightforward: develop the null and alternative hypotheses, compute the test statistic to compare to a standard distribution, estimate the probability of rejecting the null hypothesis, and then make claims about the importance of the finding. This is an oversimplification of the process of hypothesis testing. Hypothesis testing as applied in empirical research is examined here. The reader is assumed to have a basic knowledge of the role of hypothesis testing in various statistical methods. Through the use of an example, the mechanics of hypothesis testing is first reviewed. Then, five precautions surrounding the use and interpretation of hypothesis tests are developed; examples of each are provided to demonstrate how errors are made, and solutions are identified so similar errors can be avoided. Remedies are provided for common errors, and conclusions are drawn on how to use the results of this paper to improve the conduct of empirical research in transportation.
Resumo:
Regenerative medicine techniques are currently being investigated to replace damaged cartilage. Critical to the success of these techniques is the ability to expand the initial population of cells while minimising de-differentiation to allow for hyaline cartilage to form. Three-dimensional culture systems have been shown to enhance the differentiation of chondrocytes in comparison to two-dimensional culture systems. Additionally, bioreactor expansion on microcarriers can provide mechanical stimulation and reduce the amount of cellular manipulation during expansion. The aim of this study was to characterise the expansion of human chondrocytes on microcarriers and to determine their potential to form cartilaginous tissue in vitro. High-grade human articular cartilage was obtained from leg amputations with ethics approval. Chondrocytes were isolated by collagenase digestion and expanded in either monolayers (104 cells/cm2) or on CultiSpher-G microcarriers (104 cells/mg) for three weeks. Following expansion, monolayer cells were passaged and cells on microcarriers were either left intact or the cells were released with trypsin/EDTA. Pellets from these three groups were formed and cultured for three weeks to establish the chondrogenic differentiation potential of monolayer-expanded and microcarrier-expanded chondrocytes. Cell viability, proliferation, glycosaminoglycan (GAG) accumulation, and collagen synthesis were assessed. Histology and immunohistochemistry were also performed. Human chondrocytes remained viable and expanded on microcarriers 10.2±2.6 fold in three weeks. GAG content significantly increased with time, with the majority of GAG found in the medium. Collagen production per nanogram DNA increased marginally during expansion. Histology revealed that chondrocytes were randomly distributed on microcarrier surfaces yet most pores remained cell free. Critically, human chondrocytes expanded on microcarriers maintained their ability to redifferentiate in pellet culture, as demonstrated by Safranin-O and collagen II staining. These data confirm the feasibility of microcarriers for passage-free cultivation of human articular chondrocytes. However, cell expansion needs to be improved, perhaps through growth factor supplementation, for clinical utility. Recent data indicate that cell-laden microcarriers can be used to seed fresh microcarriers, thereby increasing the expansion factor while minimising enzymatic passage.
Resumo:
xpanding human chondrocytes in vitro while maintaining their ability to form cartilage remains a key challenge in cartilage tissue engineering. One promising approach to address this is to use microcarriers as substrates for chondrocyte expansion. While microcarriers have shown beneficial effects for expansion of animal and ectopic human chondrocytes, their utility has not been determined for freshly isolated adult human articular chondrocytes. Thus, we investigated the proliferation and subsequent chondrogenic differentiation of these clinically relevant cells on porous gelatin microcarriers and compared them to those expanded using traditional monolayers. Chondrocytes attached to microcarriers within 2 days and remained viable over 4 weeks of culture in spinner flasks. Cells on microcarriers exhibited a spread morphology and initially proliferated faster than cells in monolayer culture, however, with prolonged expansion they were less proliferative. Cells expanded for 1 month and enzymatically released from microcarriers formed cartilaginous tissue in micromass pellet cultures, which was similar to tissue formed by monolayer-expanded cells. Cells left attached to microcarriers did not exhibit chondrogenic capacity. Culture conditions, such as microcarrier material, oxygen tension, and mechanical stimulation require further investigation to facilitate the efficient expansion of clinically relevant human articular chondrocytes that maintain chondrogenic potential for cartilage regeneration applications.
Resumo:
Corneal-height data are typically measured with videokeratoscopes and modeled using a set of orthogonal Zernike polynomials. We address the estimation of the number of Zernike polynomials, which is formalized as a model-order selection problem in linear regression. Classical information-theoretic criteria tend to overestimate the corneal surface due to the weakness of their penalty functions, while bootstrap-based techniques tend to underestimate the surface or require extensive processing. In this paper, we propose to use the efficient detection criterion (EDC), which has the same general form of information-theoretic-based criteria, as an alternative to estimating the optimal number of Zernike polynomials. We first show, via simulations, that the EDC outperforms a large number of information-theoretic criteria and resampling-based techniques. We then illustrate that using the EDC for real corneas results in models that are in closer agreement with clinical expectations and provides means for distinguishing normal corneal surfaces from astigmatic and keratoconic surfaces.
Resumo:
This paper presents the details of experimental studies on the shear strength of a recently developed, cold-formed steel beam known as LiteSteel Beam (LSB) with web openings. The innovative LSB sections have the beneficial characteristics of torsionally rigid closed rectangular flanges combined with economical fabrication processes from a single strip of high strength steel. They combine the stability of hot-rolled steel sections with the high strength to weight ratio of conventional cold-formed steel sections. The LSB sections are commonly used as flexural members in the building industry. Current practice in flooring systems is to include openings in the web element of floor joists or bearers so that building services can be located within them. Shear behaviour of LSBs with web openings is more complicated while their shear strengths are considerably reduced by the presence of web openings. However, limited research has been undertaken on the shear behaviour and strength of LSBs with web openings. Therefore a detailed experimental study involving 26 shear tests was undertaken to investigate the shear behaviour and strength of different LSB sections. Simply supported test specimens of LSBs with an aspect ratio of 1.5 were loaded at midspan until failure. This paper presents the details of this experimental study and the results. Experimental results showed that the current design rules in cold-formed steel structures design codes (AS/NZS 4600) [1] are very conservative for the shear design of LSBs with web openings. Improved design equations have been proposed for the shear strength of LSBs with web openings based on experimental results from this study.
Resumo:
Focusing on the use of language is a crucial strategy in good mathematics teaching and a teacher’s guidance can assist students to master the language of mathematics. This article discusses the statements with reference to recent year 7 and 9 NAPLAN numeracy tests. It draws the readers’ attention to the complexities of language in the field of mathematics. Although this article refers to NAPLAN numeracy tests it also offers advice about good teaching practice.
Resumo:
The LiteSteel beam (LSB) is a new hollow flange channel section developed by OneSteel Australian Tube Mills using their patented dual electric resistance welding and automated continuous roll-forming process. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. The LSBs are commonly used as flexural members in buildings. However, the LSB flexural members are subjected to lateral distortional buckling, which reduces their member moment capacities. Unlike the commonly observed lateral torsional buckling of steel beams, the lateral distortional buckling of LSBs is characterised by simultaneous lateral deflection, twist, and cross sectional change due to web distortion. An experimental study including more than 50 lateral buckling tests was therefore conducted to investigate the behaviour and strength of LSB flexural members. It included the available 13 LSB sections with spans ranging from 1200 to 4000 mm. Lateral buckling tests based on a quarter point loading were conducted using a special test rig designed to simulate the required simply supported and loading conditions accurately. Experimental moment capacities were compared with the predictions from the design rules in the Australian cold-formed steel structures standard. The new design rules in the standard were able to predict the moment capacities more accurately than previous design rules. This paper presents the details of lateral distortional buckling tests, in particular the features of the lateral buckling test rig, the results and the comparisons. It also includes the results of detailed studies into the mechanical properties and residual stresses of LSBs.
Resumo:
There are large uncertainties in the aerothermodynamic modelling of super-orbital re-entry which impact the design of spacecraft thermal protection systems (TPS). Aspects of the thermal environment of super-orbital re-entry flows can be simulated in the laboratory using arc- and plasma jet facilities and these devices are regularly used for TPS certification work [5]. Another laboratory device which is capable of simulating certain critical features of both the aero and thermal environment of super-orbital re-entry is the expansion tube, and three such facilities have been operating at the University of Queensland in recent years[10]. Despite some success, wind tunnel tests do not achieve full simulation, however, a virtually complete physical simulation of particular re-entry conditions can be obtained from dedicated flight testing, and the Apollo era FIRE II flight experiment [2] is the premier example which still forms an important benchmark for modern simulations. Dedicated super-orbital flight testing is generally considered too expensive today, and there is a reluctance to incorporate substantial instrumentation for aerothermal diagnostics into existing missions since it may compromise primary mission objectives. An alternative approach to on-board flight measurements, with demonstrated success particularly in the ‘Stardust’ sample return mission, is remote observation of spectral emissions from the capsule and shock layer [8]. JAXA’s ‘Hayabusa’ sample return capsule provides a recent super-orbital reentry example through which we illustrate contributions in three areas: (1) physical simulation of super-orbital re-entry conditions in the laboratory; (2) computational simulation of such flows; and (3) remote acquisition of optical emissions from a super-orbital re entry event.
Resumo:
It is recognised that individuals do not always respond honestly when completing psychological tests. One of the foremost issues for research in this area is the inability to detect individuals attempting to fake. While a number of strategies have been identified in faking, a commonality of these strategies is the latent role of long term memory. Seven studies were conducted in order to examine whether it is possible to detect the activation of faking related cognitions using a lexical decision task. Study 1 found that engagement with experiential processing styles predicted the ability to fake successfully, confirming the role of associative processing styles in faking. After identifying appropriate stimuli for the lexical decision task (Studies 2A and 2B), Studies 3 to 5 examined whether a cognitive state of faking could be primed and subsequently identified, using a lexical decision task. Throughout the course of these studies, the experimental methodology was increasingly refined in an attempt to successfully identify the relevant priming mechanisms. The results were consistent and robust throughout the three priming studies: faking good on a personality test primed positive faking related words in the lexical decision tasks. Faking bad, however, did not result in reliable priming of negative faking related cognitions. To more completely address potential issues with the stimuli and the possible role of affective priming, two additional studies were conducted. Studies 6A and 6B revealed that negative faking related words were more arousing than positive faking related words, and that positive faking related words were more abstract than negative faking related words and neutral words. Study 7 examined whether the priming effects evident in the lexical decision tasks occurred as a result of an unintentional mood induction while faking the psychological tests. Results were equivocal in this regard. This program of research aligned the fields of psychological assessment and cognition to inform the preliminary development and validation of a new tool to detect faking. Consequently, an implicit technique to identify attempts to fake good on a psychological test has been identified, using long established and robust cognitive theories in a novel and innovative way. This approach represents a new paradigm for the detection of individuals responding strategically to psychological testing. With continuing development and validation, this technique may have immense utility in the field of psychological assessment.
Resumo:
In the context of government funding and targets for increased participation in higher education and equity groups, as well as attrition rates, the literature on first year higher education highlights the importance of appropriate levels of support for students transitioning to higher education. In the law school context, support of first year students is also important in the response to the high levels of stress among law students. It is therefore necessary for universities to provide a variety of support to first year students from both a student perspective and a curriculum perspective. This paper explores the process of investigating the expansion of student support, including peer support programs, staff led programs, appointing a first year coordinator and developing a curriculum plan. These programs promote engagement and ensure a cohesive and integrated first year experience from both curriculum design and student experience perspectives. This paper will explain the process undertaken at QUT of expanding support for first year law students, overview the program details and will reflect on the feedback from students, peer facilitators and staff of expanding support for first year law students at QUT. The paper will conclude with recommendations for improvement to the program.
Resumo:
Language Modeling (LM) has been successfully applied to Information Retrieval (IR). However, most of the existing LM approaches only rely on term occurrences in documents, queries and document collections. In traditional unigram based models, terms (or words) are usually considered to be independent. In some recent studies, dependence models have been proposed to incorporate term relationships into LM, so that links can be created between words in the same sentence, and term relationships (e.g. synonymy) can be used to expand the document model. In this study, we further extend this family of dependence models in the following two ways: (1) Term relationships are used to expand query model instead of document model, so that query expansion process can be naturally implemented; (2) We exploit more sophisticated inferential relationships extracted with Information Flow (IF). Information flow relationships are not simply pairwise term relationships as those used in previous studies, but are between a set of terms and another term. They allow for context-dependent query expansion. Our experiments conducted on TREC collections show that we can obtain large and significant improvements with our approach. This study shows that LM is an appropriate framework to implement effective query expansion.
Resumo:
In information retrieval, a user's query is often not a complete representation of their real information need. The user's information need is a cognitive construction, however the use of cognitive models to perform query expansion have had little study. In this paper, we present a cognitively motivated query expansion technique that uses semantic features for use in ad hoc retrieval. This model is evaluated against a state-of-the-art query expansion technique. The results show our approach provides significant improvements in retrieval effectiveness for the TREC data sets tested.