Expansion and chondrogenic potential of human articular chondrocytes on macroporous microcarriers


Autoria(s): Leavesley, D.; Klein, T.; Schrobback, K.; Hutmacher, D.; Scheutz, M.; Malda, J.; Gadd, K.
Data(s)

2009

Resumo

Regenerative medicine techniques are currently being investigated to replace damaged cartilage. Critical to the success of these techniques is the ability to expand the initial population of cells while minimising de-differentiation to allow for hyaline cartilage to form. Three-dimensional culture systems have been shown to enhance the differentiation of chondrocytes in comparison to two-dimensional culture systems. Additionally, bioreactor expansion on microcarriers can provide mechanical stimulation and reduce the amount of cellular manipulation during expansion. The aim of this study was to characterise the expansion of human chondrocytes on microcarriers and to determine their potential to form cartilaginous tissue in vitro. High-grade human articular cartilage was obtained from leg amputations with ethics approval. Chondrocytes were isolated by collagenase digestion and expanded in either monolayers (104 cells/cm2) or on CultiSpher-G microcarriers (104 cells/mg) for three weeks. Following expansion, monolayer cells were passaged and cells on microcarriers were either left intact or the cells were released with trypsin/EDTA. Pellets from these three groups were formed and cultured for three weeks to establish the chondrogenic differentiation potential of monolayer-expanded and microcarrier-expanded chondrocytes. Cell viability, proliferation, glycosaminoglycan (GAG) accumulation, and collagen synthesis were assessed. Histology and immunohistochemistry were also performed. Human chondrocytes remained viable and expanded on microcarriers 10.2±2.6 fold in three weeks. GAG content significantly increased with time, with the majority of GAG found in the medium. Collagen production per nanogram DNA increased marginally during expansion. Histology revealed that chondrocytes were randomly distributed on microcarrier surfaces yet most pores remained cell free. Critically, human chondrocytes expanded on microcarriers maintained their ability to redifferentiate in pellet culture, as demonstrated by Safranin-O and collagen II staining. These data confirm the feasibility of microcarriers for passage-free cultivation of human articular chondrocytes. However, cell expansion needs to be improved, perhaps through growth factor supplementation, for clinical utility. Recent data indicate that cell-laden microcarriers can be used to seed fresh microcarriers, thereby increasing the expansion factor while minimising enzymatic passage.

Identificador

http://eprints.qut.edu.au/39202/

Publicador

British Editorial Society of Bone and Joint Surgery

Relação

http://proceedings.jbjs.org.uk/cgi/content/abstract/91-B/SUPP_II/347

Leavesley, D., Klein, T., Schrobback, K., Hutmacher, D., Scheutz, M., Malda, J., & Gadd, K. (2009) Expansion and chondrogenic potential of human articular chondrocytes on macroporous microcarriers. Journal of Bone and Joint Surgery - British Volume, 91B(SUPP 2), p. 347.

Fonte

Cell & Molecular Biosciences; Faculty of Built Environment and Engineering; Faculty of Science and Technology; Institute of Health and Biomedical Innovation; Science Research Centre

Palavras-Chave #060100 BIOCHEMISTRY AND CELL BIOLOGY
Tipo

Journal Article