927 resultados para Estimation, Generalized Class, Polynomial Phase
Resumo:
Electric power utilities are installing distribution automation systems (DAS) for better management and control of the distribution networks during the recent past. The success of DAS, largely depends on the availability of reliable database of the control centre and thus requires an efficient state estimation (SE) solution technique. This paper presents an efficient and robust three-phase SE algorithm for application to radial distribution networks. This method exploits the radial nature of the network and uses forward and backward propagation scheme to estimate the line flows, node voltage and loads at each node, based on the measured quantities. The SE cannot be executed without adequate number of measurements. The extension of the method to the network observability analysis and bad data detection is also discussed. The proposed method has been tested to analyze several practical distribution networks of various voltage levels and also having high R:X ratio of lines. The results for a typical network are presented for illustration purposes. © 2000 Elsevier Science S.A. All rights reserved.
Resumo:
A Monte Carlo model of ultrasound modulation of multiply scattered coherent light in a highly scattering media has been carried out for estimating the phase shift experienced by a photon beam on its transit through US insonified region. The phase shift is related to the tissue stiffness, thereby opening an avenue for possible breast tumor detection. When the scattering centers in the tissue medium is exposed to a deterministic forcing with the help of a focused ultrasound (US) beam, due to the fact that US-induced oscillation is almost along particular direction, the direction defined by the transducer axis, the scattering events increase, thereby increasing the phase shift experienced by light that traverses through the medium. The phase shift is found to increase with increase in anisotropy g of the medium. However, as the size of the focused region which is the region of interest (ROI) increases, a large number of scattering events take place within the ROI, the ensemble average of the phase shift (Delta phi) becomes very close to zero. The phase of the individual photon is randomly distributed over 2 pi when the scattered photon path crosses a large number of ultrasound wavelengths in the focused region. This is true at high ultrasound frequency (1 MHz) when mean free path length of photon l(s) is comparable to wavelength of US beam. However, at much lower US frequencies (100 Hz), the wavelength of sound is orders of magnitude larger than l(s), and with a high value of g (g 0.9), there is a distinct measurable phase difference for the photon that traverses through the insonified region. Experiments are carried out for validation of simulation results.
Resumo:
We address the problem of speech enhancement using a risk- estimation approach. In particular, we propose the use the Stein’s unbiased risk estimator (SURE) for solving the problem. The need for a suitable finite-sample risk estimator arises because the actual risks invariably depend on the unknown ground truth. We consider the popular mean-squared error (MSE) criterion first, and then compare it against the perceptually-motivated Itakura-Saito (IS) distortion, by deriving unbiased estimators of the corresponding risks. We use a generalized SURE (GSURE) development, recently proposed by Eldar for MSE. We consider dependent observation models from the exponential family with an additive noise model,and derive an unbiased estimator for the risk corresponding to the IS distortion, which is non-quadratic. This serves to address the speech enhancement problem in a more general setting. Experimental results illustrate that the IS metric is efficient in suppressing musical noise, which affects the MSE-enhanced speech. However, in terms of global signal-to-noise ratio (SNR), the minimum MSE solution gives better results.
Resumo:
Estimating program worst case execution time(WCET) accurately and efficiently is a challenging task. Several programs exhibit phase behavior wherein cycles per instruction (CPI) varies in phases during execution. Recent work has suggested the use of phases in such programs to estimate WCET with minimal instrumentation. However the suggested model uses a function of mean CPI that has no probabilistic guarantees. We propose to use Chebyshev's inequality that can be applied to any arbitrary distribution of CPI samples, to probabilistically bound CPI of a phase. Applying Chebyshev's inequality to phases that exhibit high CPI variation leads to pessimistic upper bounds. We propose a mechanism that refines such phases into sub-phases based on program counter(PC) signatures collected using profiling and also allows the user to control variance of CPI within a sub-phase. We describe a WCET analyzer built on these lines and evaluate it with standard WCET and embedded benchmark suites on two different architectures for three chosen probabilities, p={0.9, 0.95 and 0.99}. For p= 0.99, refinement based on PC signatures alone, reduces average pessimism of WCET estimate by 36%(77%) on Arch1 (Arch2). Compared to Chronos, an open source static WCET analyzer, the average improvement in estimates obtained by refinement is 5%(125%) on Arch1 (Arch2). On limiting variance of CPI within a sub-phase to {50%, 10%, 5% and 1%} of its original value, average accuracy of WCET estimate improves further to {9%, 11%, 12% and 13%} respectively, on Arch1. On Arch2, average accuracy of WCET improves to 159% when CPI variance is limited to 50% of its original value and improvement is marginal beyond that point.
Resumo:
Recently, authors published a method to indirectly measure series capacitance (C-s) of a single, isolated, uniformly wound transformer winding, from its measured frequency response. The next step was to implement it on an actual three-phase transformer. This task is not as straightforward as it might appear at first glance, since the measured frequency response on a three-phase transformer is influenced by nontested windings and their terminal connections, core, tank, etc. To extract the correct value of C-s from this composite frequency response, the formulation has to be reworked to first identify all significant influences and then include their effects. Initially, the modified method and experimental results on a three-phase transformer (4 MVA, 33 kV/433 V) are presented along with results on the winding considered in isolation (for cross validation). Later, the method is directly implemented on another three-phase unit (3.5 MVA, 13.8 kV/765 V) to show repeatability.
Resumo:
Hit-to-kill interception of high velocity spiraling target requires accurate state estimation of relative kinematic parameters describing spiralling motion. In this pa- per, spiraling target motion is captured by representing target acceleration through sinusoidal function in inertial frame. A nine state unscented Kalman filter (UKF) formulation is presented here with three relative positions, three relative velocities, spiraling frequency of target, inverse of ballistic coefficient and maneuvering coef-ficient. A key advantage of the target model presented here is that it is of generic nature and can capture spiraling as well as pure ballistic motions without any change of tuning parameters. Extensive Six-DOF simulation experiments, which includes a modified PN guidance and dynamic inversion based autopilot, show that near Hit-to-Kill performance can be obtained with noisy RF seeker measurements of gimbal angles, gimbal angle rates, range and range rate.
Resumo:
An extended Kalman filter based generalized state estimation approach is presented in this paper for accurately estimating the states of incoming high-speed targets such as ballistic missiles. A key advantage of this nine-state problem formulation is that it is very much generic and can capture spiraling as well as pure ballistic motion of targets without any change of the target model and the tuning parameters. A new nonlinear model predictive zero-effort-miss based guidance algorithm is also presented in this paper, in which both the zero-effort-miss as well as the time-to-go are predicted more accurately by first propagating the nonlinear target model (with estimated states) and zero-effort interceptor model simultaneously. This information is then used for computing the necessary lateral acceleration. Extensive six-degrees-of-freedom simulation experiments, which include noisy seeker measurements, a nonlinear dynamic inversion based autopilot for the interceptor along with appropriate actuator and sensor models and magnitude and rate saturation limits for the fin deflections, show that near-zero miss distance (i.e., hit-to-kill level performance) can be obtained when these two new techniques are applied together. Comparison studies with an augmented proportional navigation based guidance shows that the proposed model predictive guidance leads to a substantial amount of conservation in the control energy as well.
Resumo:
We address the problem of two-dimensional (2-D) phase retrieval from magnitude of the Fourier spectrum. We consider 2-D signals that are characterized by first-order difference equations, which have a parametric representation in the Fourier domain. We show that, under appropriate stability conditions, such signals can be reconstructed uniquely from the Fourier transform magnitude. We formulate the phase retrieval problem as one of computing the parameters that uniquely determine the signal. We show that the problem can be solved by employing the annihilating filter method, particularly for the case when the parameters are distinct. For the more general case of the repeating parameters, the annihilating filter method is not applicable. We circumvent the problem by employing the algebraically coupled matrix pencil (ACMP) method. In the noiseless measurement setup, exact phase retrieval is possible. We also establish a link between the proposed analysis and 2-D cepstrum. In the noisy case, we derive Cramer-Rao lower bounds (CRLBs) on the estimates of the parameters and present Monte Carlo performance analysis as a function of the noise level. Comparisons with state-of-the-art techniques in terms of signal reconstruction accuracy show that the proposed technique outperforms the Fienup and relaxed averaged alternating reflections (RAAR) algorithms in the presence of noise.
Resumo:
http://www.medphys.org/PhDAbstracts/ Abstracted in Medical Physics Journal
Resumo:
ENGLISH: Age composition of catch, and growth rate, of yellowfin tuna have been estimated by Hennemuth (1961a) and Davidoff (1963). The relative abundance and instantaneous total mortality rate of yellowfin tuna during 1954-1959 have been estimated by Hennenmuth (1961b). It is now possible to extend this work, because more data are available; these include data for 1951-1954, which were previously not available, and data for 1960-1962, which were collected subsequent to Hennemuth's (1961b) publication. In that publication, Hennemuth estimated the total instantaneous mortality rate (Z) during the entire time period a year class is present in the fishery following full recruitment. However, this method may lead to biased estimates of abundance, and hence mortality rates, because of both seasonal migrations into or out of specific fishing areas and possible seasonal differences in availability or vulnerability of the fish to the fishing gear. Schaefer, Chatwin and Broadhead (1961) and Joseph etl al. (1964) have indicated that seasonal migrations of yellowfin occur. A method of estimating mortality rates which is not biased by seasonal movements would be of value in computations of population dynamics. The method of analysis outlined and used in the present paper may obviate this bias by comparing the abundance of an individual yellowfin year class, following its period of maximum abundance, in an individual area during a specific quarter of the year with its abundance in the same area one year later. The method was suggested by Gulland (1955) and used by Chapman, Holt and Allen (1963) in assessing Antarctic whale stocks. This method, and the results of its use with data for yellowfin caught in the eastern tropical Pacific from 1951-1962 are described in this paper. SPANISH: La composición de edad de la captura, y la tasa de crecimiento del atún aleta amarilla, han sido estimadas por Hennemuth (1961a) y Davidoff (1963). Hennemuth (1961b), estimó la abundancia relativa y la tasa de mortalidad total instantánea del atún aleta amarilla durante 1954-1959. Se puede ampliar ahora, este trabajo, porque se dispone de más datos; éstos incluyen datos de 1951 1954, de los cuales no se disponía antes, y datos de 1960-1962 que fueron recolectados después de la publicación de Hennemuth (1961b). En esa obra, Hennemuth estimó la tasa de mortalidad total instantánea (Z) durante todo el período de tiempo en el cual una clase anual está presente en la pesquería, consecutiva al reclutamiento total. Sin embargo, este método puede conducir a estimaciones con bias (inclinación viciada) de abundancia, y de aquí las tasas de mortalidad, debidas tanto a migraciones estacionales dentro o fuera de las áreas determinadas de pesca, como a posibles diferencias estacionales en la disponibilidad y vulnerabilidad de los peces al equipo de pesca. Schaefer, Chatwin y Broadhead (1961) y Joseph et al. (1964) han indicado que ocurren migraciones estacionales de atún aleta amarilla. Un método para estimar las tasas de mortalidad el cual no tuviera bias debido a los movimientos estacionales, sería de valor en los cómputos de la dinámica de las poblaciones. El método de análisis delineado y usado en el presente estudio puede evitar este bias al comparar la abundancia de una clase anual individual de atún aleta amarilla, subsecuente a su período de abundancia máxima en un área individual, durante un trimestre específico del año, con su abundancia en la misma área un año más tarde. Este método fue sugerido por Gulland (1955) y empleado por Chapman, Holt y Allen (1963) en la declaración de los stocks de la ballena antártica. Este método y los resultados de su uso, en combinación con los datos del atún aleta amarilla capturado en el Pacífico oriental tropical desde 1951-1962, son descritos en este estudio.
Resumo:
The dissertation is concerned with the mathematical study of various network problems. First, three real-world networks are considered: (i) the human brain network (ii) communication networks, (iii) electric power networks. Although these networks perform very different tasks, they share similar mathematical foundations. The high-level goal is to analyze and/or synthesis each of these systems from a “control and optimization” point of view. After studying these three real-world networks, two abstract network problems are also explored, which are motivated by power systems. The first one is “flow optimization over a flow network” and the second one is “nonlinear optimization over a generalized weighted graph”. The results derived in this dissertation are summarized below.
Brain Networks: Neuroimaging data reveals the coordinated activity of spatially distinct brain regions, which may be represented mathematically as a network of nodes (brain regions) and links (interdependencies). To obtain the brain connectivity network, the graphs associated with the correlation matrix and the inverse covariance matrix—describing marginal and conditional dependencies between brain regions—have been proposed in the literature. A question arises as to whether any of these graphs provides useful information about the brain connectivity. Due to the electrical properties of the brain, this problem will be investigated in the context of electrical circuits. First, we consider an electric circuit model and show that the inverse covariance matrix of the node voltages reveals the topology of the circuit. Second, we study the problem of finding the topology of the circuit based on only measurement. In this case, by assuming that the circuit is hidden inside a black box and only the nodal signals are available for measurement, the aim is to find the topology of the circuit when a limited number of samples are available. For this purpose, we deploy the graphical lasso technique to estimate a sparse inverse covariance matrix. It is shown that the graphical lasso may find most of the circuit topology if the exact covariance matrix is well-conditioned. However, it may fail to work well when this matrix is ill-conditioned. To deal with ill-conditioned matrices, we propose a small modification to the graphical lasso algorithm and demonstrate its performance. Finally, the technique developed in this work will be applied to the resting-state fMRI data of a number of healthy subjects.
Communication Networks: Congestion control techniques aim to adjust the transmission rates of competing users in the Internet in such a way that the network resources are shared efficiently. Despite the progress in the analysis and synthesis of the Internet congestion control, almost all existing fluid models of congestion control assume that every link in the path of a flow observes the original source rate. To address this issue, a more accurate model is derived in this work for the behavior of the network under an arbitrary congestion controller, which takes into account of the effect of buffering (queueing) on data flows. Using this model, it is proved that the well-known Internet congestion control algorithms may no longer be stable for the common pricing schemes, unless a sufficient condition is satisfied. It is also shown that these algorithms are guaranteed to be stable if a new pricing mechanism is used.
Electrical Power Networks: Optimal power flow (OPF) has been one of the most studied problems for power systems since its introduction by Carpentier in 1962. This problem is concerned with finding an optimal operating point of a power network minimizing the total power generation cost subject to network and physical constraints. It is well known that OPF is computationally hard to solve due to the nonlinear interrelation among the optimization variables. The objective is to identify a large class of networks over which every OPF problem can be solved in polynomial time. To this end, a convex relaxation is proposed, which solves the OPF problem exactly for every radial network and every meshed network with a sufficient number of phase shifters, provided power over-delivery is allowed. The concept of “power over-delivery” is equivalent to relaxing the power balance equations to inequality constraints.
Flow Networks: In this part of the dissertation, the minimum-cost flow problem over an arbitrary flow network is considered. In this problem, each node is associated with some possibly unknown injection, each line has two unknown flows at its ends related to each other via a nonlinear function, and all injections and flows need to satisfy certain box constraints. This problem, named generalized network flow (GNF), is highly non-convex due to its nonlinear equality constraints. Under the assumption of monotonicity and convexity of the flow and cost functions, a convex relaxation is proposed, which always finds the optimal injections. A primary application of this work is in the OPF problem. The results of this work on GNF prove that the relaxation on power balance equations (i.e., load over-delivery) is not needed in practice under a very mild angle assumption.
Generalized Weighted Graphs: Motivated by power optimizations, this part aims to find a global optimization technique for a nonlinear optimization defined over a generalized weighted graph. Every edge of this type of graph is associated with a weight set corresponding to the known parameters of the optimization (e.g., the coefficients). The motivation behind this problem is to investigate how the (hidden) structure of a given real/complex valued optimization makes the problem easy to solve, and indeed the generalized weighted graph is introduced to capture the structure of an optimization. Various sufficient conditions are derived, which relate the polynomial-time solvability of different classes of optimization problems to weak properties of the generalized weighted graph such as its topology and the sign definiteness of its weight sets. As an application, it is proved that a broad class of real and complex optimizations over power networks are polynomial-time solvable due to the passivity of transmission lines and transformers.
Resumo:
Estimation of the far-field centre is carried out in beam auto-alignment. In this paper, the features of the far-field of a square beam are presented. Based on these features, a phase-only matched filter is designed, and the algorithm of centre estimation is developed. Using the simulated images with different kinds of noise and the 40 test images that are taken in sequence, the accuracy of this algorithm is estimated. Results show that the error is no more than one pixel for simulated noise images with a 99% probability, and the stability is restricted within one pixel for test images. Using the improved algorithm, the consumed time is reduced to 0.049 s.