994 resultados para Equilibrium Problem


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work examines analytically the forced convection in a channel partially filled with a porous material and subjected to constant wall heat flux. The Darcy–Brinkman–Forchheimer model is used to represent the fluid transport through the porous material. The local thermal non-equilibrium, two-equation model is further employed as the solid and fluid heat transport equations. Two fundamental models (models A and B) represent the thermal boundary conditions at the interface between the porous medium and the clear region. The governing equations of the problem are manipulated, and for each interface model, exact solutions, for the solid and fluid temperature fields, are developed. These solutions incorporate the porous material thickness, Biot number, fluid to solid thermal conductivity ratio and Darcy number as parameters. The results can be readily used to validate numerical simulations. They are, further, applicable to the analysis of enhanced heat transfer, using porous materials, in heat exchangers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part 18: Optimization in Collaborative Networks

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since policy-makers usually pursue several conflicting objectives, policy-making can be understood as a multicriteria decision problem. Following the methodological proposal by André and Cardenete (2005) André, F. J. and Cardenete, M. A. 2005. Multicriteria Policy Making. Defining Efficient Policies in a General Equilibrium Model, Seville: Centro de Estudios Andaluces. Working Paper No. E2005/04, multi-objective programming is used in connection with a computable general equilibrium model to represent optimal policy-making and to obtain so-called efficient policies in an application to a regional economy (Andalusia, Spain). This approach is applied to the design of subsidy policies under two different scenarios. In the first scenario, it is assumed that the government is concerned just about two objectives: ensuring the profitability of a key strategic sector and increasing overall output. Finally, the scope of the exercise is enlarged by solving a problem with seven policy objectives, including both general and sectorial objectives. It is concluded that the observed policy could have been Pareto-improved in several directions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents studies of the role of disorder in non-equilibrium quantum systems. The quantum states relevant to dynamics in these systems are very different from the ground state of the Hamiltonian. Two distinct systems are studied, (i) periodically driven Hamiltonians in two dimensions, and (ii) electrons in a one-dimensional lattice with power-law decaying hopping amplitudes. In the first system, the novel phases that are induced from the interplay of periodic driving, topology and disorder are studied. In the second system, the Anderson transition in all the eigenstates of the Hamiltonian are studied, as a function of the power-law exponent of the hopping amplitude.

In periodically driven systems the study focuses on the effect of disorder in the nature of the topology of the steady states. First, we investigate the robustness to disorder of Floquet topological insulators (FTIs) occurring in semiconductor quantum wells. Such FTIs are generated by resonantly driving a transition between the valence and conduction band. We show that when disorder is added, the topological nature of such FTIs persists as long as there is a gap at the resonant quasienergy. For strong enough disorder, this gap closes and all the states become localized as the system undergoes a transition to a trivial insulator.

Interestingly, the effects of disorder are not necessarily adverse, disorder can also induce a transition from a trivial to a topological system, thereby establishing a Floquet Topological Anderson Insulator (FTAI). Such a state would be a dynamical realization of the topological Anderson insulator. We identify the conditions on the driving field necessary for observing such a transition. We realize such a disorder induced topological Floquet spectrum in the driven honeycomb lattice and quantum well models.

Finally, we show that two-dimensional periodically driven quantum systems with spatial disorder admit a unique topological phase, which we call the anomalous Floquet-Anderson insulator (AFAI). The AFAI is characterized by a quasienergy spectrum featuring chiral edge modes coexisting with a fully localized bulk. Such a spectrum is impossible for a time-independent, local Hamiltonian. These unique characteristics of the AFAI give rise to a new topologically protected nonequilibrium transport phenomenon: quantized, yet nonadiabatic, charge pumping. We identify the topological invariants that distinguish the AFAI from a trivial, fully localized phase, and show that the two phases are separated by a phase transition.

The thesis also present the study of disordered systems using Wegner's Flow equations. The Flow Equation Method was proposed as a technique for studying excited states in an interacting system in one dimension. We apply this method to a one-dimensional tight binding problem with power-law decaying hoppings. This model presents a transition as a function of the exponent of the decay. It is shown that the the entire phase diagram, i.e. the delocalized, critical and localized phases in these systems can be studied using this technique. Based on this technique, we develop a strong-bond renormalization group that procedure where we solve the Flow Equations iteratively. This renormalization group approach provides a new framework to study the transition in this system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We treat the problem of existence of a location-then-price equilibrium in the circle model with a linear quadratic type of transportation cost function which can be either convex or concave. We show the existence of a unique perfect equilibrium for the concave case when the linear and quadratic terms are equal and of a unique perfect equilibrium for the convex case when the linear term is equal to zero. Aside from these two cases, there are feasible locations by the firms for which no equilibrium in the price subgame exists. Finally, we provide a full taxonomy of the price equilibrium regions in terms of weights of the linear and quadratic terms in the cost function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new solution to the millionaire problem is designed on the base of two new techniques: zero test and batch equation. Zero test is a technique used to test whether one or more ciphertext contains a zero without revealing other information. Batch equation is a technique used to test equality of multiple integers. Combination of these two techniques produces the only known solution to the millionaire problem that is correct, private, publicly verifiable and efficient at the same time.