Equilibrium existence in the circle model with linear quadratic transport cost 


Autoria(s): Frutos, María Ángeles de; Hamoudi, Hamid; Jarque, Xavier
Data(s)

13/10/2016

13/10/2016

1999

Resumo

We treat the problem of existence of a location-then-price equilibrium in the circle model with a linear quadratic type of transportation cost function which can be either convex or concave. We show the existence of a unique perfect equilibrium for the concave case when the linear and quadratic terms are equal and of a unique perfect equilibrium for the convex case when the linear term is equal to zero. Aside from these two cases, there are feasible locations by the firms for which no equilibrium in the price subgame exists. Finally, we provide a full taxonomy of the price equilibrium regions in terms of weights of the linear and quadratic terms in the cost function.

SIN FINANCIACIÓN

0.343 CRR (1999) Q3, 109/165 Economics, 32/45 Environmental studies, 17/29 Urban studies

UEM

Identificador

De Frutos, M. A., Hamoudi, H., y Jarque, X. (1999). Equilibrium existence in the circle model with linear quadratic transport cost. Regional Science and Urban Economics, 29(5), 605-615. DOI: 10.1016/S0166-0462(99)00014-9

01660462

http://hdl.handle.net/11268/5864

10.1016/S0166-0462(99)00014-9

Idioma(s)

eng

Direitos

openAccess

Palavras-Chave #Transporte de mercancías - Costes #Análisis coste - Beneficio #Economía del transporte #Análisis costes
Tipo

article