Equilibrium existence in the circle model with linear quadratic transport cost
Data(s) |
13/10/2016
13/10/2016
1999
|
---|---|
Resumo |
We treat the problem of existence of a location-then-price equilibrium in the circle model with a linear quadratic type of transportation cost function which can be either convex or concave. We show the existence of a unique perfect equilibrium for the concave case when the linear and quadratic terms are equal and of a unique perfect equilibrium for the convex case when the linear term is equal to zero. Aside from these two cases, there are feasible locations by the firms for which no equilibrium in the price subgame exists. Finally, we provide a full taxonomy of the price equilibrium regions in terms of weights of the linear and quadratic terms in the cost function. SIN FINANCIACIÓN 0.343 CRR (1999) Q3, 109/165 Economics, 32/45 Environmental studies, 17/29 Urban studies UEM |
Identificador |
De Frutos, M. A., Hamoudi, H., y Jarque, X. (1999). Equilibrium existence in the circle model with linear quadratic transport cost. Regional Science and Urban Economics, 29(5), 605-615. DOI: 10.1016/S0166-0462(99)00014-9 01660462 http://hdl.handle.net/11268/5864 10.1016/S0166-0462(99)00014-9 |
Idioma(s) |
eng |
Direitos |
openAccess |
Palavras-Chave | #Transporte de mercancías - Costes #Análisis coste - Beneficio #Economía del transporte #Análisis costes |
Tipo |
article |