1000 resultados para Equações diferenciais ordinárias
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Este trabalho objetiva analisar os possíveis efeitos que o uso da Modelagem Matemática, enquanto estratégia de ensino, provoca no processo de aprendizagem dos alunos da disciplina Cálculo III – EDO (Equações Diferenciais Ordinárias). A pesquisa foi desenvolvida em uma turma de alunos do 2° ano do curso de Engenharia da Computação, na Universidade Federal do Pará. O trabalho é de cunho qualitativo onde foram levados em consideração os aspectos sociais que permeiam uma sala de aula universitária. Importante destacar que houve a participação direta da professora-pesquisadora de Matemática. Para que eu pudesse fazer a coleta dos dados, utilizei alguns instrumentos que considerei essenciais, tais como: observações, gravações em áudio, questionários semiestruturados e registros escritos dos alunos. De posse de alguns resultados preliminares, me foi possível observar o quanto a Modelagem Matemática desempenha um papel relevante na aprendizagem dos conteúdos matemáticos por parte dos alunos, pois foi possível eles interagirem com outras áreas do conhecimento sendo, desta forma, estimulados a realizarem pesquisa e, simultaneamente, serem parte do processo de ensino e aprendizagem que foi gerado no ambiente de sala de aula. Observei, também, que a utilização da Modelagem Matemática, enquanto estratégia de ensino e aprendizagem, conduziu os alunos a despertarem para os aspectos reflexivos e críticos até então adormecidos, uma vez que são necessários para uma aprendizagem com qualidade para, assim, construírem seus conhecimentos acadêmicos e profissionais.
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Synchronization in nonlinear dynamical systems, especially in chaotic systems, is field of research in several areas of knowledge, such as Mechanical Engineering and Electrical Engineering, Biology, Physics, among others. In simple terms, two systems are synchronized if after a certain time, they have similar behavior or occurring at the same time. The sound and image in a film is an example of this phenomenon in our daily lives. The studies of synchronization include studies of continuous dynamic systems, governed by differential equations or studies of discrete time dynamical systems, also called maps. Maps correspond, in general, discretizations of differential equations and are widely used to model physical systems, mainly due to its ease of computational. It is enough to make iterations from given initial conditions for knowing the trajectories of system. This completion of course work based on the study of the map called ”Zaslavksy Web Map”. The Zaslavksy Web Map is a result of the combination of the movements of a particle in a constant magnetic field and a wave electrostatic propagating perpendicular to the magnetic field. Apart from interest in the particularities of this map, there was objective the deepening of concepts of nonlinear dynamics, as equilibrium points, linear stability, stability non-linear, bifurcation and chaos
Resumo:
This work presents a theoretical study of ordinary differential equations of first order directed so as to provide basis for the development of an educational software that helps students and researchers confronted with this issue. The algorithm was developed in HTML language in to that the results provide a website that allows the audience to access the software anywhere which has internet connection
Resumo:
We investigate in this work the behaviour of the decay to the fixed points, in particular along the bifurcations, for a family of one-dimensional logistic-like discrete mappings. We start with the logistic map focusing in the transcritical bifurcation. Next we investigate the convergence to the stationary state at the cubic map. At the end we generalise the procedure for a mapping of the logistic-like type. Near the fixed point, the dynamical variable varies slowly. This property allows us to approximate/rewrite the equation of differences, hence natural from discrete mappings, into an ordinary differential equation. We then solve such equation which furnishes the evolution towards the stationary state. Our numerical simulations confirm the theoretical results validating the above mentioned approximation
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
In this paper we present two studies, the first one completed and the second one in development, which are based in teaching approaches that propose the qualitative study of mathematical models as a strategy for the teaching and learning of mathematical concepts. These teaching approaches focus on subjects from Higher Education such as Introduction to Ordinary Differential Equations and Topics of Differential and Integral Calculus. We denominate this common aspect of the teaching approaches as Model Analysis and in a preliminary level we relate it with Mathematical Modeling. Furthermore, we discuss some questions related with the choice of the theme and the role of Digital Technologies when Model Analysis is applied.