962 resultados para Effective Temperature
Resumo:
An innovative and effective approach based on low-pressure, low-frequency, thermally nonequilibrium, high-density inductively coupled plasmas is proposed to synthesize device-quality nanocrystalline silicon (nc-Si) thin films at room temperature and with very competitive growth rates. The crystallinity and microstructure properties (including crystal structure, crystal volume fraction, surface morphology, etc.) of this nanostructured phase of Si can be effectively tailored in broad ranges for different device applications by simply varying the inductive rf power density from 25.0 to 41.7 mW/cm3. In particular, at a moderate rf power density of 41.7 mW/cm3, the nc-Si films feature a very high growth rate of 2.37 nm/s, a high crystalline fraction of 86%, a vertically aligned columnar structure with the preferential (111) growth orientation and embedded Si quantum dots, as well as a clean, smooth and defect-free interface. We also propose the formation mechanism of nc-Si thin films which relates the high electron density and other unique properties of the inductively coupled plasmas and the formation of the nanocrystalline phase on the Si surface.
Resumo:
An advanced inductively coupled plasma (ICP)-assisted rf magnetron sputtering deposition method is developed to synthesize regular arrays of pear-shaped ZnO nanodots on a thin SiNx buffer layer pre-deposited onto a silicon substrate. It is shown that the growth of ZnO nanodots obey the cubic root-law behavior. It is also shown that the synthesized ZnO nanodots are highly-uniform, controllable by the experimental parameters, and also feature good structural and photoluminescent properties. These results suggest that this custom-designed ICP-based technique is very effective and highly-promising for the synthesis of property- and size-controllable highly-uniform ZnO nanodots suitable for next-generation light emitting diodes, energy storage, UV nanolasers, and other applications.
Resumo:
Quantum chromodynamics (QCD) is the theory describing interaction between quarks and gluons. At low temperatures, quarks are confined forming hadrons, e.g. protons and neutrons. However, at extremely high temperatures the hadrons break apart and the matter transforms into plasma of individual quarks and gluons. In this theses the quark gluon plasma (QGP) phase of QCD is studied using lattice techniques in the framework of dimensionally reduced effective theories EQCD and MQCD. Two quantities are in particular interest: the pressure (or grand potential) and the quark number susceptibility. At high temperatures the pressure admits a generalised coupling constant expansion, where some coefficients are non-perturbative. We determine the first such contribution of order g^6 by performing lattice simulations in MQCD. This requires high precision lattice calculations, which we perform with different number of colors N_c to obtain N_c-dependence on the coefficient. The quark number susceptibility is studied by performing lattice simulations in EQCD. We measure both flavor singlet (diagonal) and non-singlet (off-diagonal) quark number susceptibilities. The finite chemical potential results are optained using analytic continuation. The diagonal susceptibility approaches the perturbative result above 20T_c$, but below that temperature we observe significant deviations. The results agree well with 4d lattice data down to temperatures 2T_c.
Resumo:
The effective thermal conductivity of steel alloy FeCrAlY (Fe-20 wt.% Cr-5 wt.% Al-2 wt.% Y-20 wt.%) foams with a range of pore sizes and porosities was measured between 300 and 800 K, under both vacuum and atmospheric conditions. The results show that the effective thermal conductivity increases rapidly as temperature is increased, particularly in the higher temperature range (500-800 K) where the transport of heat is dominated by thermal radiation. The effective conductivity at temperature 800 K can be three times higher than that at room temperature (300 K). Results obtained under vacuum conditions reveal that the effective conductivity increases with increasing pore size or decreasing porosity. The contribution of natural convection to heat conduction was found to be significant, with the effective thermal conductivity at ambient pressure twice the value of vacuum condition. The results also show that natural convection in metal foams is strongly dependent upon porosity. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Time resolved magneto-optic Kerr rotation measurements of optically induced spin quantum beats are performed on heavily doped bulk (Ga,Mn)As diluted magnetic semiconductors (DMS). An effective g-factor of about 0.2-0.3 over a wide range of temperature for both as-grown and annealed (Ga,Mn)As samples is obtained. A larger effective g-factor at lower temperature and an increase of the spin relaxation with increasing in-plane magnetic field are observed and attributed to the stronger p-d exchange interaction between holes and the localized magnetic ion spins, leading to a larger Zeeman splitting and heavy-hole-light-hole mixing. An abnormal dip structure of the g-factor in the vicinity of the Curie temperature suggests that the mean-field model is insufficient to describe the interactions and dynamics of spins in DMS because it neglects the short-range spin correlation effect. (c) 2008 American Institute of Physics.
Resumo:
We present, from first principles, a direct method for evaluating the exact fermion propagator in the presence of a general background held at finite temperature, which can be used to determine the finite temperature effective action for the system. As applications, we determine the complete one loop finite temperature effective actions for (0 + 1)-dimensional QED as well as the Schwinger model. These effective actions, which are derived in the real time (closed time path) formalism, generate systematically all the Feynman amplitudes calculated in thermal perturbation theory and also show that the retarded (advanced) amplitudes vanish in these theories. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of this paper is to study finite temperature effects in effective quantum electrodynamics using Weisskopf's zero-point energy method in the context of thermo, field dynamics. After a general calculation for a weak magnetic field at fixed T, the asymptotic behavior of the Euler-Kockel-Heisenberg Lagrangian density is investigated focusing on the regularization requirements in the high temperature limit. In scalar QED the same problem is also discussed.
Resumo:
From spinor and scalar (2 + 1)-dimensional QED effective actions at finite temperature and density in a constant magnetic field background, we calculate the corresponding virial coefficients for particles in the lowest Landau level. These coefficients depend on a parameter theta related to the time-component of the gauge field, which plays an essential role for large gauge invariance. The variation of the parameter theta might lead to an interpolation between fermionic and bosonic virial coefficients, although these coefficients are singular for theta = pi/2.
Resumo:
Both the parity-breaking and parity-invariant parts of the effective action for the gauge field in QED 3 with massive fermions at finite temperature are obtained exactly. This is feasible because we use a particular configuration of the background gauge field, namely a constant magnetic field and a time-dependent time component of the background gauge field. Our results allow us to compute exactly physically interesting quantities such as the induced charge density and fermion condensate whose dependence on the temperature, fermion mass and gauge field is discussed. ©1999 The American Physical Society.
Resumo:
This study evaluated the antifungal potential of low-temperature plasma (LTP) on a 72-hour Candida albicans biofilm. A growth inhibition zone test was conducted with agar plates inoculated with C. albicans and submitted to LTP and argon application at 3 and 10 mm for 10, 30, 60, 90, and 120 seconds. The groups for biofilm assays were 60 seconds of LTP application with a tip-to-sample distance of 3 mm (LTP-3) and 10 mm (LTP-10); –application of only argon gas for 60 seconds with a tip-to-sample distance of 3 mm (Ar-3) and 10 mm (Ar-10); and no treatment. The C. albicans biofilm was grown on saliva-coated discs. The medium was replaced every 24 hours. Confocal laser scanning microscopy revealed the proportion of live and dead cells, and variable pressure scanning electron microscopy (VPSEM) showed biofilm/cell structure. No inhibition zone was observed for control and either Ar groups. For the LTP groups, a progressively increasing of inhibition zone diameter was observed for different treatment durations. The LTP-3 and LTP-10 groups presented higher proportions of dead cells compared with the Ar-3 and Ar-10 groups. VPSEM revealed cell perforations in the LTP-3 and LTP-10 groups. A short period of LTP exposure demonstrated an antifungal effect on C. albicans biofilm.
Resumo:
Extreme temperatures have been shown to have a detrimental effect on health. Hot temperatures can increase the risk of mortality, particularly in people suffering from cardiorespiratory diseases. Given the onset of climate change, it is critical that the impact of temperature on health is understood, so that effective public health strategies can correctly identify vulnerable groups within the population. However, while effects on mortality have been extensively studied, temperature–related morbidity has received less attention. This study applied a systematic review and meta–analysis to examine the current literature relating to hot temperatures and morbidity.