995 resultados para EPITAXIAL-GROWTH
Resumo:
In this paper, we report the fabrication of Si-based double hetero-epitaxial SOI materials Si/gamma-Al2O3/Si. First, single crystalline gamma-Al2O3 (100) insulator films were grown epitaxially on Si(100) by LPCVD, and then, Si(100) epitaxial films were grown on gamma-Al2O3 (100)/Si(100) epi-substrates using a CVD method similar to silicon on sapphire (SOS) epitaxial growth. The Si/gamma-Al2O3 (100)/Si(100) SOI materials are characterized in detail by RHEED, XRD and AES techniques. The results demonstrate that the device-quality novel SOI materials Si/gamma-Al2O3 (100)/Si(100) has been fabricated successfully and can be used for application of MOS device.
Resumo:
The gamma-Al2O3 films were grown on Si (100) substrates using the sources of TMA (Al (CH3)(3)) and O-2 by very low-pressure chemical vapor deposition (VLP-CVD). It has been found that the gamma-Al2O3 film has a mirror-like surface and the RMS was about 2.5nm. And the orientation relationship was gamma-Al2O3(100)/Si(100). The thickness uniformity of gamma-Al2O3 films for 2-inch epi-wafer was less than 5%. The X-ray diffraction (XRD) and reflection high-energy electron diffraction (RHEED) results show that the crystalline quality of the film was improved after the film was annealed at 1000degreesC in O-2 atmosphere. The high-frequency C-V and leakage current of Al/gamma-Al2O3/Si capacitor were also measured to verify the annealing effect of the film. The results show that the dielectric constant increased from 4 to 7 and the breakdown voltage for 65-nm-thick gamma-Al2O3 film on silicon increases from 17V to 53V.
Resumo:
Epitaxial growth of InN on GaN(0001) by plasma-assisted molecular-beam epitaxy is investigated over a range of growth parameters including source flux and substrate temperature. Combining reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM), we establish a relationship between film growth mode and the deposition condition. Both two-dimensional (2D) and three-dimensional (3D) growth modes of the film are observed. For 2D growth, sustained RHEED intensity oscillations are recorded while STM reveals 2D nucleation islands. For 3D growth, less than three oscillation periods are observed indicating the Stranski-Krastanov (SK) growth mode of the film. Simultaneous measurements of (reciprocal) lattice constant by RHEED suggest a gradual relaxation of the strain in film, which commences during the first bilayer (BL) deposition and almost completes after 2-4 BLs. For SK growth, 3D islanding initiates after the strain has mostly been relieved, presumably by dislocations, so the islands are likely strain free. (C) 2002 American Institute of Physics.
Resumo:
gamma-Al2O3 films were grown on Si (10 0) substrates using the sources of TMA (AI(CH3)(3)) and O-2 by very low-pressure chemical vapor deposition. The effects of temperature control on the crystalline quality, surface morphology, uniformity and dielectricity were investigated. It has been found that the,gamma-Al2O3 film prepared at a temperature of 1000degreesC has a good crystalline quality, but the surface morphology, uniformity and dielectricity were poor due to the etching reaction between 0, and Si substrate in the initial growth stage. However, under a temperature-varied multi-step process the properties Of gamma-Al2O3 film were improved. The films have a mirror-like surface and the dielectricity was superior to that grown under a single-step process. The uniformity of gamma-Al2O3 films for 2-in epi-wafer was <5%, it is better than that disclosed elsewhere. In order to improve the crystalline quality, the gamma-Al2O3 films were annealed for I h in O-2 atmosphere. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The surface reaction mechanism of Si1-xGex/Si growth using SiH4 and GeH4 in UHV/CVD system was studied. The saturated adsorption and desorption of SiH4 from Si(1 0 0) surface was investigated with the help of TPD and RHEED, and it was found that all the 4 hydrogen atoms of one SiH4 molecule were adsorbed to the Si surface, which meant that the dissociated adsorption ratio was proportional to 4 power of surface vacancies. The analysis of the reaction of GeH4 was also done. A new surface reaction kinetic model on Si1-xGex/Si epitaxial growth under UHV conditions by SiH4/GeH4 was proposed based on these studies. The predictions of the model were verified by the experimental results. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
SiC was grown on Si (100) substrates oriented and off-oriented by 2-5 degrees towards [011] with simultaneous supply of C2H4 and S2H6 at 1050 degrees C. SiC formed during removal of oxide could be removed at 1150 degrees C. Twinned growth occurred on both oriented and off-oriented substrates during carbonization, but fewer twins formed on the off-oriented substrate than that on the oriented substrate. In SiC growth process, twinned growth continued on the off-oriented substrate whereas twinned growth stopped and single crystal SiC with double-domain (2 x 1) superstructure formed on the oriented substrate. SiC single crystal could grow on a carbonized twinned buffer layer. Obvious SiC LO and TO phonon modes were observed with Raman spectroscopy in the epilayer grown on the oriented substrate. The surface of the epilayer grown on the oriented substrate was smooth, while there was a high density of islands on the epilayer grown on the off-oriented substrate. The film grown on the oriented substrate is superior than that grown on the off-oriented substrate. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Homoepitaxial growth of 4H-SiC p(+)/pi/n(-) multi-epilayer on n(+) substrate and in-situ doping of p(+) and pi-epilayer have been achieved in the LPCVD system with SiH4+C2H4+H-2. The surface morphologies, homogeneities and doping concentrations of the n(-)-single-epilayers and the p(+)/pi/n(-) multi-epilayers were investigated by Nomarski, AFM, Raman and SIMS, respectively. AFM and Raman investigation showed that both single- and,multi-epilayers have good surface morphologies and homogeneities, and the SIMS analyses indicated the boron concentration in p+ layer was at least 100 times higher than that in pi layer. The UV photodetectors fabricated on 4H-SiC p(+)/pi/n(-) multi-epilayers showed low dark current and high detectivity in the UV range.
Resumo:
Epitaxial growth of semiconductor films in multiple-wafer mode is under vigorous development in order to improve yield output to meet the industry increasing demands. Here we report on results of the heteroepitaxial growth of multi-wafer 3C-SiC films on Si(100) substrates by employing a home-made horizontal hot wall low pressure chemical vapour deposition (HWLPCVD) system which was designed to be have a high-throughput, multi-wafer (3x2-inch) capacity. 3C-SiC film properties of the intra-wafer and the wafer-to-wafer including crystalline morphologies, structures and electronics are characterized systematically. The undoped and the moderate NH3 doped n-type 3C-SiC films with specular surface are grown in the HWLPCVD, thereafter uniformities of intra-wafer thickness and sheet resistance of the 3C-SiC films are obtained to be 6%similar to 7% and 6.7%similar to 8%, respectively, and within a run, the deviations of wafer-to-wafer thickness and sheet resistance are less than 1% and 0.8%, respectively.
Resumo:
Metalorganic vapor-phase epitaxial growth of GaAs doped with isovalent Sb is reported. By increasing the trimethylantimony concentration during growth the total Sb concentration was varied between 1 X 10(17)-1 X 10(19) cm-3. A new deep level defect with an activation energy of the thermal emission rates of E(c) - 0.54 eV is observed. The defect concentration increases with increasing As partial pressure and with increasing Sb doping. It is also found that the EL2 concentration decreases with increasing Sb doping. The new energy level is suggested to be the 0/ + transition of the Sb(Ga) heteroantisite defect. No photocapacitance quenching effect, reflecting a metastable state as seen for EL2 (As(Ga)), is observed for Sb(Ga).
Resumo:
ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precursor, respectively. The effects of the growth temperatures on the growth characteristics and optical properties of ZnO films were investigated. The X-ray diffraction measurement (XRD) results indicated that all the thin films were grown with highly c- axis orientation. The surface morphologies and crystal properties of the films were critically dependent on the growth temperatures. Although there was no evidence of epitaxial growth, the scanning electron microscopy (SEM) image of ZnO film grown at 400℃ revealed the presence of ZnO microcrystallines with closed packed hexagon structure. The photoluminescence spectrum at room temperature showed only bright band-edge (3. 33eV) emissions with little or no deep-level e- mission related to defects.
Resumo:
The molecular beam epitaxial growth of high quality epilayers on (100) InP substrate using a valve phosphorous cracker cell over a wide range of P/In BEP ratio (2.0-7.0) and growth rate (0.437 and 0. 791μm/h). Experimental results show that electrical properties exhibit a pronounced dependence on growth parameters,which are growth rate, P/In BEP ratio, cracker zone temperature, and growth temperature. The parameters have been optimized carefully via the results of Hall measurements. For a typical sample, 77K electron mobility of 4.57 × 10^4 cm^2/(V · s) and electron concentration of 1.55×10^15 cm^-3 have been achieved with an epilayer thickness of 2.35μm at a growth temperature of 370℃ by using a cracking zone temperature of 850℃.
Resumo:
In this paper, we report the fabrication of Si-based double hetero-epitaxial SOI materials Si/gamma-Al2O3/Si. First, single crystalline gamma-Al2O3 (100) insulator films were grown epitaxially on Si(100) by LPCVD, and then, Si(100) epitaxial films were grown on gamma-Al2O3 (100)/Si(100) epi-substrates using a CVD method similar to silicon on sapphire (SOS) epitaxial growth. The Si/gamma-Al2O3 (100)/Si(100) SOI materials are characterized in detail by RHEED, XRD and AES techniques. The results demonstrate that the device-quality novel SOI materials Si/gamma-Al2O3 (100)/Si(100) has been fabricated successfully and can be used for application of MOS device.
Resumo:
The gamma-Al2O3 films were grown on Si (100) substrates using the sources of TMA (Al (CH3)(3)) and O-2 by very low-pressure chemical vapor deposition (VLP-CVD). It has been found that the gamma-Al2O3 film has a mirror-like surface and the RMS was about 2.5nm. And the orientation relationship was gamma-Al2O3(100)/Si(100). The thickness uniformity of gamma-Al2O3 films for 2-inch epi-wafer was less than 5%. The X-ray diffraction (XRD) and reflection high-energy electron diffraction (RHEED) results show that the crystalline quality of the film was improved after the film was annealed at 1000degreesC in O-2 atmosphere. The high-frequency C-V and leakage current of Al/gamma-Al2O3/Si capacitor were also measured to verify the annealing effect of the film. The results show that the dielectric constant increased from 4 to 7 and the breakdown voltage for 65-nm-thick gamma-Al2O3 film on silicon increases from 17V to 53V.
Resumo:
Thin films of phthalocyanine compounds show weak epitaxial growth on a monodomain film of a rod-like molecule (see figure). The resulting organic electronic devices exhibit high charge carrier mobilities close to those of the single-crystal devices.
Resumo:
Unique crystalline morphologies of solution-cast films of HDPE/iPP blends were investigated by means of transmission electron microscopy (TEM), electron diffraction, metal shadowing and specimen-tilt techniques. The unique morphologies come from an epitaxial crystallization of HDPE on iPP. The contact planes of the two kinds of crystals are (100) of HDPE and (010) of iPP, while the intercrossing angle between their chain axes is about 50-degrees. The HDPE existed with different crystalline morphologies in the two kinds of crystalline regions of iPP spherulites, i.e. cross-hatched and single-crystal-type structures. Based on structural analysis, two models of epitaxial growth of HDPE on iPP are proposed.