937 resultados para Drug interactions.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

New directly acting antivirals (DAAs) that inhibit hepatitis C virus (HCV) replication are increasingly used for the treatment of chronic hepatitis C. A marked pharmacokinetic variability and a high potential for drug-drug interactions between DAAs and numerous drug classes have been identified. In addition, ribavirin (RBV), commonly associated with hemolytic anemia, often requires dose adjustment, advocating for therapeutic drug monitoring (TDM) in patients under combined antiviral therapy. However, an assay for the simultaneous analysis of RBV and DAAs constitutes an analytical challenge because of the large differences in polarity among these drugs, ranging from hydrophilic (RBV) to highly lipophilic (telaprevir [TVR]). Moreover, TVR is characterized by erratic behavior on standard octadecyl-based reversed-phase column chromatography and must be separated from VRT-127394, its inactive C-21 epimer metabolite. We have developed a convenient assay employing simple plasma protein precipitation, followed by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) for the simultaneous determination of levels of RBV, boceprevir, and TVR, as well as its metabolite VRT-127394, in plasma. This new, simple, rapid, and robust HPLC-MS/MS assay offers an efficient method of real-time TDM aimed at maximizing efficacy while minimizing the toxicity of antiviral therapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The injurious effect of nonsteroidal anti-inflammatory drugs (NSAIDs) in the small intestine was not appreciated until the widespread use of capsule endoscopy. Animal studies found that NSAID-induced small intestinal injury depends on the ability of these drugs to be secreted into the bile. Because the individual toxicity of amphiphilic bile acids and NSAIDs directly correlates with their interactions with phospholipid membranes, we propose that the presence of both NSAIDs and bile acids alters their individual physicochemical properties and enhances the disruptive effect on cell membranes and overall cytotoxicity. We utilized in vitro gastric AGS and intestinal IEC-6 cells and found that combinations of bile acid, deoxycholic acid (DC), taurodeoxycholic acid, glycodeoxycholic acid, and the NSAID indomethacin (Indo) significantly increased cell plasma membrane permeability and became more cytotoxic than these agents alone. We confirmed this finding by measuring liposome permeability and intramembrane packing in synthetic model membranes exposed to DC, Indo, or combinations of both agents. By measuring physicochemical parameters, such as fluorescence resonance energy transfer and membrane surface charge, we found that Indo associated with phosphatidylcholine and promoted the molecular aggregation of DC and potential formation of larger and isolated bile acid complexes within either biomembranes or bile acid-lipid mixed micelles, which leads to membrane disruption. In this study, we demonstrated increased cytotoxicity of combinations of bile acid and NSAID and provided a molecular mechanism for the observed toxicity. This mechanism potentially contributes to the NSAID-induced injury in the small bowel.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Small chemicals like drugs tend to bind to proteins via noncovalent bonds, e.g. hydrogen bonds, salt bridges or electrostatic interactions. Some chemicals interact with other molecules than the actual target ligand, representing so-called 'off-target' activities of drugs. Such interactions are a main cause of adverse side effects to drugs and are normally classified as predictable type A reactions. Detailed analysis of drug-induced immune reactions revealed that off-target activities also affect immune receptors, such as highly polymorphic human leukocyte antigens (HLA) or T cell receptors (TCR). Such drug interactions with immune receptors may lead to T cell stimulation, resulting in clinical symptoms of delayed-type hypersensitivity. They are assigned the 'pharmacological interaction with immune receptors' (p-i) concept. Analysis of p-i has revealed that drugs bind preferentially or exclusively to distinct HLA molecules (p-i HLA) or to distinct TCR (p-i TCR). P-i reactions differ from 'conventional' off-target drug reactions as the outcome is not due to the effect on the drug-modified cells themselves, but is the consequence of reactive T cells. Hence, the complex and diverse clinical manifestations of delayed-type hypersensitivity are caused by the functional heterogeneity of T cells. In the abacavir model of p-i HLA, the drug binding to HLA may result in alteration of the presenting peptides. More importantly, the drug binding to HLA generates a drug-modified HLA, which stimulates T cells directly, like an allo-HLA. In the sulfamethoxazole model of p-i TCR, responsive T cells likely require costimulation for full T cell activation. These findings may explain the similarity of delayed-type hypersensitivity reactions to graft-versus-host disease, and how systemic viral infections increase the risk of delayed-type hypersensitivity reactions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Anticancer drugs typically are administered in the clinic in the form of mixtures, sometimes called combinations. Only in rare cases, however, are mixtures approved as drugs. Rather, research on mixtures tends to occur after single drugs have been approved. The goal of this research project was to develop modeling approaches that would encourage rational preclinical mixture design. To this end, a series of models were developed. First, several QSAR classification models were constructed to predict the cytotoxicity, oral clearance, and acute systemic toxicity of drugs. The QSAR models were applied to a set of over 115,000 natural compounds in order to identify promising ones for testing in mixtures. Second, an improved method was developed to assess synergistic, antagonistic, and additive effects between drugs in a mixture. This method, dubbed the MixLow method, is similar to the Median-Effect method, the de facto standard for assessing drug interactions. The primary difference between the two is that the MixLow method uses a nonlinear mixed-effects model to estimate parameters of concentration-effect curves, rather than an ordinary least squares procedure. Parameter estimators produced by the MixLow method were more precise than those produced by the Median-Effect Method, and coverage of Loewe index confidence intervals was superior. Third, a model was developed to predict drug interactions based on scores obtained from virtual docking experiments. This represents a novel approach for modeling drug mixtures and was more useful for the data modeled here than competing approaches. The model was applied to cytotoxicity data for 45 mixtures, each composed of up to 10 selected drugs. One drug, doxorubicin, was a standard chemotherapy agent and the others were well-known natural compounds including curcumin, EGCG, quercetin, and rhein. Predictions of synergism/antagonism were made for all possible fixed-ratio mixtures, cytotoxicities of the 10 best-scoring mixtures were tested, and drug interactions were assessed. Predicted and observed responses were highly correlated (r2 = 0.83). Results suggested that some mixtures allowed up to an 11-fold reduction of doxorubicin concentrations without sacrificing efficacy. Taken together, the models developed in this project present a general approach to rational design of mixtures during preclinical drug development. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objectives of this research dissertation were to develop and present novel analytical methods for the quantification of surface binding interactions between aqueous nanoparticles and water-soluble organic solutes. Quantification of nanoparticle surface interactions are presented in this work as association constants where the solutes have interacted with the surface of the nanoparticles. By understanding these nanoparticle-solute interactions, in part through association constants, the scientific community will better understand how organic drugs and nanomaterials interact in the environment, as well as to understand their eventual environmental fate. The biological community, pharmaceutical, and consumer product industries also have vested interests in nanoparticle-drug interactions for nanoparticle toxicity research and in using nanomaterials as drug delivery vesicles. The presented novel analytical methods, applied to nanoparticle surface association chemistry, may prove to be useful in assisting the scientific community to understand the risks, benefits, and opportunities of nanoparticles. The development of the analytical methods presented uses a model nanoparticle, Laponite-RD (LRD). LRD was the proposed nanoparticle used to model the system and technique because of its size, 25 nm in diameter. The solutes selected to model for these studies were chosen because they are also environmentally important. Caffeine, oxytetracycline (OTC), and quinine were selected to use as models because of their environmental importance and chemical properties that can be exploited in the system. All of these chemicals are found in the environment; thus, how they interact with nanoparticles and are transported through the environment is important. The analytical methods developed utilize and a wide-bore hydrodynamic chromatography to induce a partial hydrodynamic separation between nanoparticles and dissolved solutes. Then, using deconvolution techniques, two separate elution profiles for the nanoparticle and organic solute can be obtained. Followed by a mass balance approach, association constants between LRD, our model nanoparticle, and organic solutes are calculated. These findings are the first of their kind for LRD and nanoclays in dilute dispersions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To characterize potential mechanism-based inactivation (MBI) of major human drug-metabolizing cytochromes P450 (CYP) by monoamine oxidase (MAO) inhibitors, including the antitubercular drug isoniazid. Human liver microsomal CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A activities were investigated following co- and preincubation with MAO inhibitors. Inactivation kinetic constants (K-I and k(inact)) were determined where a significant preincubation effect was observed. Spectral studies were conducted to elucidate the mechanisms of inactivation. Hydrazine MAO inhibitors generally exhibited greater inhibition of CYP following preincubation, whereas this was less frequent for the propargylamines, and tranylcypromine and moclobemide. Phenelzine and isoniazid inactivated all CYP but were most potent toward CYP3A and CYP2C19. Respective inactivation kinetic constants (K-I and k(inact)) for isoniazid were 48.6 mu M and 0.042 min(-1) and 79.3 mu M and 0.039 min(-1). Clorgyline was a selective inactivator of CYP1A2 (6.8 mu M and 0.15 min(-1)). Inactivation of CYP was irreversible, consistent with metabolite-intermediate complexation for isoniazid and clorgyline, and haeme destruction for phenelzine. With the exception of phenelzine-mediated CYP3A inactivation, glutathione and superoxide dismutase failed to protect CYP from inactivation by isoniazid and phenelzine. Glutathione partially slowed (17%) the inactivation of CYP1A2 by clorgyline. Alternate substrates or inhibitors generally protected against CYP inactivation. These data are consistent with mechanism-based inactivation of human drug-metabolizing CYP enzymes and suggest that impaired metabolic clearance may contribute to clinical drug-drug interactions with some MAO inhibitors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent developments within the National Health Service have led to an increase in personnel 'qualified' to prescribe a wide range of pharmacological agents. A short (38-day) Continuing Professional Development course in prescribing is deemed adequate to fully train individuals for practice. A sound understanding of prescribing medicines has important implications for patient benefit. For example, a prescriber would require some knowledge of drug absorption, distribution, metabolism and excretion, as well as aspects of drug delivery and drug-drug interactions. Drug metabolism in particular exerts a powerful influence on drug action; this can range from complete failure of efficacy through to life-threatening toxicity. Moreover, it is conservatively estimated that there may be several thousand deaths each year in the UK arising from an inadequate knowledge of drug metabolism when prescribing medicines. This one-day course focused on the importance of understanding drug metabolism on treatment strategies and outcomes, and was accessed by a range of healthcare professionals in the West Midlands area of the UK. © 2007 Informa UK Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The poor retention and efficacy of instilled drops as a means of delivering drugs to the ophthalmic environment is well-recognised. The potential value of contact lenses as a means of ophthalmic drug delivery, and consequent improvement of pre-corneal retention is one obvious route to the development of a more effective ocular delivery system. Furthermore, the increasing availability and clinical use of daily disposable contact lenses provides the platform for the development of viable single-day use drug delivery devices based on existing materials and lenses. In order to provide a basis for the effective design of such devices, a systematic understanding of the factors affecting the interaction of individual drugs with the lens matrix is required. Because a large number of potential structural variables are involved, it is necessary to achieve some rationalisation of the parameters and physicochemical properties (such as molecular weight, charge, partition coefficients) that influence drug interactions. Ophthalmic dyes and structurally related compounds based on the same core structure were used to investigate these various factors and the way in which they can be used in concert to design effective release systems for structurally different drugs. Initial studies of passive diffusional release form a necessary precursor to the investigation of the features of the ocular environment that over-ride this simple behaviour. Commercially available contact lenses of differing structural classifications were used to study factors affecting the uptake of the surrogate actives and their release under 'passive' conditions. The interaction between active and lens material shows considerable and complex structure dependence, which is not simply related to equilibrium water content. The structure of the polymer matrix itself was found to have the dominant controlling influence on active uptake; hydrophobic interaction with the ophthalmic dye playing a major role. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-performance liquid chromatography coupled with solid phase extraction method was developed for determination of isofraxidin in rat plasma after oral administration of Acanthopanax senticosus extract (ASE), and pharmacokinetic parameters of isofraxidin either in ASE or pure compound were measured. The HPLC analysis was performed on a Dikma Diamonsil RP(18) column (4.6 mm x 150 mm, 5 microm) with the isocratic elution of solvent A (acetonitrile) and solvent B (0.1% aqueous phosphoric acid, v/v) (A : B = 22 : 78) and the detection wavelength was set at 343 nm. The calibration curve was linear over the range of 0.156-15.625 microg/ml. The limit of detection was 60 ng/ml. The intra-day precision was 5.8%, and the inter-day precision was 6.0%. The recovery was 87.30+/-1.73%. When the dosage of ASE is equal to pure compound caculated by the amount of isofraxidin, it has been found to have two maximum concentrations in plasma while the pure compound only showed one peak in the plasma concentration-time curve. The determined content of isofraxidin in plasma after oral administration of ASE is the total contents of free isofraxidin and its precursors in ASE in vitro. The pharmacokinetic characteristics of ASE showed the priority of the extract and the properities of traditional Chinese medicine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel strategy is reported to produce biodegradable microfiber-scaffolds layered with high densities of microparticles encapsulating a model protein. Direct electrospraying on highly porous melt electrospun scaffolds provides a reproducible scaffold coating throughout the entire architecture. The burst release of protein is significantly reduced due to the immobilization of microparticles on the surface of the scaffold and release mechanisms are dependent on protein-polymer interactions. The composite scaffolds have a positive biological effect in contact with precursor osteoblast cells up to 18 days in culture. The scaffold design achieved with the techniques presented here endorses these new composite scaffolds as promising templates for growth factor delivery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We refer to a paper recently published in the Journal of travel Medicine and Infectious Disease where clinicians have been shown to have in have many questions related to travellers to multiple destinations, going for prolonged duration of travel, with chronic medical conditions, and potential drug interactions.[1] This study highlighted the inadequacy of available information sources to resolve the wide range of different medical issues for travellers. In addition, the study also highlighted the significance of collaboration in travel health...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prescribing for older patients is challenging. The prevalence of diseases increases with advancing age and causes extensive drug use. Impairments in cognitive, sensory, social and physical functioning, multimorbidity and comorbidities, as well as age-related changes in pharmacokinetics and pharmacodynamics all add to the complexity of prescribing. This study is a cross-sectional assessment of all long-term residents aged ≥ 65 years in all nursing homes in Helsinki, Finland. The residents’ health status was assessed and data on their demographic factors, health and medications were collected from their medical records in February 2003. This study assesses some essential issues in prescribing for older people: psychotropic drugs (Paper I), laxatives (Paper II), vitamin D and calcium supplements (Paper III), potentially inappropriate drugs for older adults (PIDs) and drug-drug interactions (DDIs)(Paper IV), as well as prescribing in public and private nursing homes. A resident was classified as a medication user if his or her medication record indicated a regular sequence for its dosage. Others were classified as non-users. Mini Nutritional Assessment (MNA) was used to assess residents’ nutritional status, Beers 2003 criteria to assess the use of PIDs, and the Swedish, Finnish, INteraction X-referencing database (SFINX) to evaluate their exposure to DDIs. Of all nursing home residents in Helsinki, 82% (n=1987) participated in studies I, II, and IV and 87% (n=2114) participated in the study III. The residents’ mean age was 84 years, 81% were female, and 70% were diagnosed with dementia. The mean number of drugs was 7.9 per resident; 40% of the residents used ≥ 9 drugs per day, and were thus exposed to polypharmacy. Eighty percent of the residents received psychotropics; 43% received antipsychotics, and 45% used antidepressants. Anxiolytics were prescribed to 26%, and hypnotics to 28% of the residents. Of those residents diagnosed with dementia, 11% received antidementia drugs. Fifty five percent of the residents used laxatives regularly. In multivariate analysis, those factors associated with regular laxative use were advanced age, immobility, poor nutritional status, chewing problems, Parkinson’s disease, and a high number of drugs. Eating snacks between meals was associated with lower risk for laxative use. Of all participants, 33% received vitamin D supplementation, 28% received calcium supplementation, and 20% received both vitamin D and calcium. The dosage of vitamin D was rather low: 21% received vitamin D 400 IU (10 µg) or more, and only 4% received 800 IU (20 µg) or more. In multivariate analysis, residents who received vitamin D supplementation enjoyed better nutritional status, ate snacks between meals, suffered no constipation, and received regular weight monitoring. Those residents receiving PIDs (34% of all residents) more often used psychotropic medication and were more often exposed to polypharmacy than residents receiving no PIDs. Residents receiving PIDs were less often diagnosed with dementia than were residents receiving no PIDs. The three most prevalent PIDs were short-acting benzodiazepine in greater dosages than recommended, hydroxyzine, and nitrofurantoin. These three drugs accounted for nearly 77% of all PID use. Of all residents, less than 5% were susceptible to a clinically significant DDI. The most common DDIs were related to the use of potassium-sparing diuretics, carbamazepine, and codeine. Residents exposed to potential DDIs were younger, had more often suffered a previous stroke, more often used psychotropics, and were more often exposed to PIDs and polypharmacy than were residents not exposed to DDIs. Residents in private nursing homes were less often exposed to polypharmacy than were residents in public nursing homes. Long-term residents in nursing homes in Helsinki use, on average, nearly eight drugs daily. The use of psychotropic drugs in our study was notably more common than in international studies. The prevalence of laxatives equaled other prior international studies. Regardless of the known benefit and recommendation of vitamin D supplementation for elderly residing mostly indoors, the proportion of nursing home residents receiving vitamin D and calcium was surprisingly low. The use of PIDs was common among nursing home residents. PIDs increased the likelihood of DDIs. However, DDIs did not seem a major concern among the nursing home population. Monitoring PIDs and potential drug interactions could improve the quality of prescribing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Drug-drug interactions may cause serious, even fatal clinical consequences. Therefore, it is important to examine the interaction potential of new chemical entities early in drug development. Mechanism-based inhibition is a pharmacokinetic interaction type, which causes irreversible loss of enzyme activity and can therefore lead to unusually profound and long-lasting consequences. The in vitro in vivo extrapolation (IVIVE) of drug-drug interactions caused by mechanism-based inhibition is challenging. Consequently, many of these interactions have remained unrecognised for many years. The concomitant use of the fibrate-class lipid-lowering agent gemfibrozil increases the concentrations of some drugs and their effects markedly. Even fatal cases of rhabdomyolysis occurred in patients administering gemfibrozil and cerivastatin concomitantly. One of the main mechanisms behind this effect is the mechanism-based inhibition of the cytochrome P450 (CYP) 2C8 enzyme by a glucuronide metabolite of gemfibrozil leading to increased cerivastatin concentrations. Although the clinical use of gemfibrozil has clearly decreased during recent years, gemfibrozil is still needed in some special cases. To enable safe use of gemfibrozil concomitantly with other drugs, information concerning the time and dose relationships of CYP2C8 inhibition by gemfibrozil should be known. This work was carried out as four in vivo clinical drug-drug interaction studies to examine the time and dose relationships of the mechanism-based inhibitory effect of gemfibrozil on CYP2C8. The oral antidiabetic drug repaglinide was used as a probe drug for measuring CYP2C8 activity in healthy volunteers. In this work, mechanism-based inhibition of the CYP2C8 enzyme by gemfibrozil was found to occur rapidly in humans. The inhibitory effect developed to its maximum already when repaglinide was given 1-3 h after gemfibrozil intake. In addition, the inhibition was shown to abate slowly. A full recovery of CYP2C8 activity, as measured by repaglinide metabolism, was achieved 96 h after cessation of gemfibrozil treatment. The dose-dependency of the mechanism-based inhibition of CYP2C8 by gemfibrozil was shown for the first time in this work. CYP2C8 activity was halved by a single 30 mg dose of gemfibrozil or by twice daily administration of less than 30 mg of gemfibrozil. Furthermore, CYP2C8 activity was decreased over 90% by a single dose of 900 mg gemfibrozil or twice daily dosing of approximately 100 mg gemfibrozil. In addition, with the application of physiological models to the data obtained in the dose-dependency studies, the major role of mechanism-based inhibition of CYP2C8 in the interaction between gemfibrozil and repaglinide was confirmed. The results of this work enhance the proper use of gemfibrozil and the safety of patients. The information related to time-dependency of CYP2C8 inhibition by gemfibrozil may also give new insights in order to improve the IVIVE of the drug-drug interactions of new chemical entities. The information obtained by this work may be utilised also in the design of clinical drug-drug interaction studies in the future.