968 resultados para Dielectric ceramics
Resumo:
The effect of dopants with different valencies and ionic radii on the densification, structural ordering, and microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 (BMT) is investigated. It is found that dopants such as Sb2O5, MnO, ZrO2, WO3, and ZnO improve the microwave dielectric properties of BMT. Addition of trivalent dopants is detrimental to the cation ordering and dielectric properties of BMT. A correlation between the microwave dielectric properties of BMT and ionic radii of the dopant has been established. The variation of the dielectric properties of pure and doped BMT at cryogenic temperatures is also discussed.
Resumo:
The (Ba1-x Srx) (Nd1/2, Nb1/2) O3 ceramics have been prepared by the conventional ceramic route for different values of x. Addition of a small amount of CeO2(1 wt%) as a sintering aid increased the density of the samples. The structure and microstructure of the sintered samples are studied by X-ray diffraction and SEM methods. The dielectric properties of the samples are measured in the microwave frequency region as a function of composition. The dielectric constant decreases as x increases. The coefficient of thermal variation of resonant frequency decreases as the Sr content increases and goes to the negative side. The dielectric properties of (Ba1-x Srx) (Nd1/2, Nb1/2) O3 are in the range suitable for application as dielectric resonators in microwave circuits
Resumo:
Ceramic dielectric resonators in the BaO-RE2O3-TiO2 (RE = rare earth) system have been prepared by the conventional solid state ceramic route. The dielectric properties have been tailored by substitution of different rare earth oxides and by bismuth oxide addition. The dielectric constants increased with Bi addition whereas the 0 decreased. The temperature coefficient of the resonant frequency improved with bismuth addition
Resumo:
Single-phase polycrystalline ceramics in the MO-La2O3-Ti02 (M = Ca, Sr, Ba) system, such as cation-deficient hexagonal perovskites CaLa4Ti4O15, SrLa4Ti4O15, BaLa4Ti4O15, and Ca2La4Ti5O18 and the orthorhombic phases CaLa4Ti5O17 and CaLa8Ti9O31, were prepared through the solid-state ceramic route. The phases and structure of the ceramics were analyzed through x-ray diffraction and scanning electron microscopy. The microwave dielectric properties of the ceramics were studied using a network analyzer. The investigated ceramics show high Er in the range 42 to 54, high quality factors with Q x f in the range 16,222 to 50,215 GHz, and low Tf in the range -25 to +6 ppm3/°C. These high dielectric constant materials with high Q x f up to 50,215 GHz are suitable for applications where narrow bandwidth and extremely low insertion loss is necessary, especially at frequencies around 1.9 GHz
Resumo:
The microwave dielectric properties of (I -x)CaTiO3-xSm(Mg1/2Tit,2)O3(0.1 <-x< 1.0) have been investigated. The system forms a solid solution throughout the entire compositional range. The dielectric constant decreases from 86 to 25 as x varies from 0.1 to 1.0. The Qxf varies non-linearly and increases for composition with x> 0.6. The nonmonotonic variation with composition x is more pronounced in Tt than in er. The microwave dielectric properties indicate the possibility of a phase transformation for x between 0.4 and 0.5
Resumo:
microwave dielectric properties of ceramics based on Ba(Mgv3Ta(2-2x)t3W,t3Tixt3)O3 is investigated as a function of x. The 15 densification as well as dielectric properties deteriorate with increase in the substitution levels of (Ti 1,3W113)333 + at (Ta213)3.33+ site 16 in Ba(Mg113Ta213)03. The rt is approaching zero between x = 0.1 and 0.15 in Ba(Mg it3Ta(2-2,,.)t3W,it3Ti,Tt3)O3 where quality factor is 17 reasonably good (Qu x f = 80,000-90,000 GHz). The Ba(Mg1,3Ta(2_,013W,13Ti,,13)03 with x = 1.0 has e, = 15.4, rf= -25.1 ppm/ 18 "C, Q„ x f = 35,400 GHz
Resumo:
The effect of dopants with different valencies and ionic radii on the densification, structural ordering, and microwave dielectric properties of Ba(Mg1t3Tazt3)O3 (BMT) is investigated. It is found that dopants such as Sb,05, MnO, ZrO,, WO1, and ZnO improve the microwave dielectric properties of BMT. Addition of trivalent dopants is detrimental to the cation ordering and dielectric properties of BMT. A correlation between the microwave dielectric properties of BMT and ionic radii of the dopant has been established. The variation of the dielectric properties of pure and doped BMT at cryogenic temperatures is also discussed
Resumo:
The BaO-2CeO2-nTiO2 ceramics with n = 3, 4 and 5 have been prepared with CeO2 as starting material . The ceramics have been characterized using scanning electron microscopy , X-ray diffraction , Raman and X-ray photoelectron spectroscopy techniques. The microwave dielectric properties have been measured using standard dielectric resonator techniques . BaO-2CeO2-3TiO2 (123), BaO-2CeO2-4TiO2 ( 124) and BaO-2CeO2-5TiO2 ( 125) ceramics showed dielectric constants of 38, 27 and 32, respectively . All the ceramics showed fairly good unloaded Q - factors . 124 and 125 compounds exhibited low tf values, while 123 showed a high rf value
Resumo:
The effect of glass additives on the densification , phase evolution, microstructure and microwave dielectric properties of Ba(Mg1;3 Ta2i3)03 (BMT) was investigated . Different weight percentages of quenched glass such as B203 , Si02, B203-SiO2, ZnO-B203, 5ZnO-2B2O3, Al203-SiO2, Na20-2B203.10H20, BaO-B203-SiO2, MgO-B203-SiO2, PbO-B203-SiO2 , ZnO-B203-SiO2 and 2MgO-Al203-5SiO2 were added to calcined BMT precursor . The sintering temperature of the glass -added BMT samples were lowered down to 1300 °C compared to solid-state sintering where the temperature was 1650 °C. The formation of high temperature satellite phases such as Ba5Ta4O15 and Ba7Ta6O22 were found to be suppressed by the glass addition . Addition of glass systems such as B203, ZnO-B203, 5ZnO-2B203 and ZnO-B203-SiO2 improved the densification and microwave dielectric properties. Other glasses were found to react with BMT to form low-Q phases which prevented densification . The microwave dielectric properties of undoped BMT with a densification of 93 . 1 % of the theoretical density were Cr = 24 . 8, Tr = 8 ppm/°C and Q„ x f= 80,000 GHz. The BMT doped with 1.0 wt% of B203 has Q„ x f = 124,700GHz, Cr = 24.2, and T f = -1.3 ppm /°C. The unloaded Q factor of 0.2 wt% ZnO-B203-doped BMT was 136,500 GHz while that of 1.0 wt% of 5ZnO-2B203 added ceramic was Q„ x f= 141,800 GHz . The best microwave quality factor was observed for ZnO -B203-SiO2 (ZBS) glass-added ceramics which can act as a perfect liquid-phase medium for the sintering of BMT. The microwave dielectric properties of 0.2wt% ZBS-added BMT dielectric was Q„ x f= 152,800 GHz, F,= 25.5, and Tr = - 1.5 ppm/°C
Resumo:
The (micro)structural and electrical properties of undoped and Er(3+)-doped BaTi(0.85)Zr(0.15)O(3) ceramics were studied in this work for both nominal Ba(2+) and Ti(4+) substitution formulations. The ceramics were produced from solid-state reaction and sintered at 1400 degrees C for 3 h. For those materials prepared following the donor-type nominal Ba(1-x)Er(x)(Ti(0.85)Zr(0.15))O(3) composition, especially, Er(3+) however showed a preferential substitution for the (Ti,Zr)(4+) lattice sites. This allowed synthesis of a finally acceptor-like, highly resistive Ba(Ti,Zr,Er)O(3-delta)-like system, with a solubility limit below but close to 3 cat.% Er(3+). The overall phase development is discussed in terms of the amphoteric nature of Er(3+), and appears to mainly or, at least, partially also involve a minimization of stress effects from the ion size mismatch between the dopant and host cations. Further results presented here include a comparative analysis of the behavior of the materials` grain size, electrical properties and nature of the ferroelectric-to-paraelectric phase transition upon variation of the formulation and Er(3+) content. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This letter reports microwave dielectric measurements performed in the antiferroelectric phase of NaNbO3 ceramics from 100 to 450 K. Remarkable dielectric relaxation was found within the antiferroelectric phase and in the vicinity of the ferroelectric-antiferroelectric phase transition. Such dielectric relaxation process was associated with relaxations of polar nanoregions with strong relaxor-like characteristic. In addition, the microwave dielectric measurements also revealed an unexpected and unusual anomaly in the relaxation strength, which was related to a disruption of the antiferroelectric order induced by a possible AFE-AFE phase transition. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The polycrystalline sample of Nd3/2Bi3/2Fe5O12 was prepared by a high- temperature solid-state reaction technique. Preliminary X-ray structural analysis exhibits the formation of a single-phase tetragonal structure at room temperature. Microstructural analysis by scanning electron microscopy shows that the sintered sample has well defined grains. These grains are distributed uniformly throughout the surface of the sample. Detailed studies of dielectric response at various frequencies and temperatures exhibit a dielectric anomaly at 400 A degrees C. The electrical properties (impedance, modulus and conductivity) of the material were studied using a complex impedance spectroscopy technique. These studies reveal a significant contribution of grain and grain boundary effects in the material. The frequency dependent plots of modulus and the impedance loss show that the conductivity relaxation is of non-Debye type. Studies of electrical conductivity with temperature demonstrate that the compound exhibits Arrhenius-type of electrical conductivity. Study of ac conductivity with frequency suggests that the material obeys Jonscher's universal power law.