995 resultados para Deposition temperatures


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The (Ga,Mn,N) samples were grown by the implantation of low-energy Mn ions into GaN/Al2O3 substrate at different elevated substrate temperatures with mass-analyzed low-energy dual ion beam deposition system. Auger electron spectroscopy depth profile of samples grown at different substrate temperatures indicates that the Mn ions reach deeper in samples with higher substrate temperatures. Clear X-ray diffraction peak from (Ga,Mn)N is observed in samples grown at the higher substrate temperature. It indicates that under optimized substrate temperature and annealing conditions the solid solution (Ga,Mn)N phase in samples was formed with the same lattice structure as GaN and different lattice constant. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Up to now, in most of the research work done on the effect of hydrogen on a Schottky barrier, the hydrogen was introduced into the semiconductor before metal deposition. This letter reports that hydrogen can be effectively introduced into the Schottky barriers (SBs) of Au/n-GaAs and Ti/n-GaAs by plasma hydrogen treatment (PHT) after metal deposition on [100] oriented n-GaAs substrates. The Schottky barrier height (SBH) of a SB containing hydrogen shows the zero/reverse bias annealing (ZBA/RBA) effect. ZBA makes the SBH decrease and RBA makes it increase. The variations in the SBHs are reversible. In order to obtain obvious ZBA/RBA effects, selection of the temperature for plasma hydrogen treatment is important, and it is indicated that 100-degrees-C for Au/n-GaAs and 150-degrees-C for Ti/n-GaAs are suitable temperatures. It is concluded from the analysis of experimental results that only the hydrogen located at or near the metal-semiconductor interface, rather than the hydrogen in the bulk of either the semiconductor or the metal, is responsible for the ZBA/RBA effect on SBH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-energy shift of the band-band recombination has been observed in photoluminescence spectra of the strained InP layer grown on GaAs substrate. The InP layer is under biaxial compressive strain at temperatures below the growth temperature, because the thermal expansion coefficient of InP is smaller than that of GaAs. The strain value determined by the energy shift of the band-edge peak is in good agreement with the calculated thermal strain. A band to carbon acceptor recombination is also identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precursor, respectively. The effects of the growth temperatures on the growth characteristics and optical properties of ZnO films were investigated. The X-ray diffraction measurement (XRD) results indicated that all the thin films were grown with highly c- axis orientation. The surface morphologies and crystal properties of the films were critically dependent on the growth temperatures. Although there was no evidence of epitaxial growth, the scanning electron microscopy (SEM) image of ZnO film grown at 400℃ revealed the presence of ZnO microcrystallines with closed packed hexagon structure. The photoluminescence spectrum at room temperature showed only bright band-edge (3. 33eV) emissions with little or no deep-level e- mission related to defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the electrochemical growth of gold nanowires with controlled dimensions and crystallinity. By systematically varying the deposition conditions, both polycrystalline and single-crystalline wires with diameters between 20 and 100 nm are successfully synthesized in etched ion-track membranes. The nanowires are characterized using scanning electron microscopy, high resolution transmission electron microscopy, scanning tunnelling microscopy and x-ray diffraction. The influence of the deposition parameters, especially those of the electrolyte, on the nanowire structure is investigated. Gold sulfite electrolytes lead to polycrystalline structure at the temperatures and voltages employed. In contrast, gold cyanide solution favours the growth of single crystals at temperatures between 50 and 65 degrees C under both direct current and reverse pulse current deposition conditions. The single-crystalline wires possess a [110] preferred orientation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work concerns the atomic layer deposition (ALD) of copper. ALD is a technique that allows conformal coating of difficult topographies such as narrow trenches and holes or even shadowed regions. However, the deposition of pure metals has so far been less successful than the deposition of oxides except for a few exceptions. Challenges include difficulties associated with the reduction of the metal centre of the precursor at reasonable temperatures and the tendency of metals to agglomerate during the growth process. Cu is a metal of special technical interest as it is widely used for interconnects on CMOS devices. These interconnects are usually fabricated by electroplating, which requires the deposition of thin Cu seed layers onto the trenches and vias. Here, ALD is regarded as potential candidate for replacing the current PVD technique, which is expected to reach its limitations as the critical dimensions continue to shrink. This work is separated into two parts. In the first part, a laboratory-scale ALD reactor was constructed and used for the thermal ALD of Cu. In the second part, the potentials of the application of Cu ALD on industry scale fabrication were examined in a joint project with Applied Materials and Intel. Within this project precursors developed by industrial partners were evaluated on a 300 mm Applied Materials metal-ALD chamber modified with a direct RF-plasma source. A feature that makes ALD a popular technique among researchers is the possibility to produce high- level thin film coatings for micro-electronics and nano-technology with relatively simple laboratory- scale reactors. The advanced materials and surfaces group (AMSG) at Tyndall National Institute operates a range of home-built ALD reactors. In order to carry out Cu ALD experiments, modifications to the normal reactor design had to be made. For example a carrier gas mechanism was necessary to facilitate the transport of the low-volatile Cu precursors. Precursors evaluated included the readily available Cu(II)-diketonates Cu-bis(acetylacetonate), Cu-bis(2,2,6,6-tetramethyl-hepta-3,5-dionate) and Cu-bis(1,1,1,5,5,5-hexafluoacetylacetonate) as well as the Cu-ketoiminate Cu-bis(4N-ethylamino- pent-3-en-2-onate), which is also known under the trade name AbaCus (Air Liquide), and the Cu(I)- silylamide 1,3-diisopropyl-imidazolin-2-ylidene Cu(I) hexamethyldisilazide ([NHC]Cu(hmds)), which was developed at Carleton University Ottawa. Forming gas (10 % H2 in Ar) was used as reducing agent except in early experiments where formalin was used. With all precursors an extreme surface selectivity of the deposition process was observed and significant growth was only achieved on platinum-group metals. Improvements in the Cu deposition process were obtained with [NHC]Cu(hmds) compared with the Cu(II) complexes. A possible reason is the reduced oxidation state of the metal centre. Continuous Cu films were obtained on Pd and indications for saturated growth with a rate of about 0.4 Å/cycle were found for deposition at 220 °C. Deposits obtained on Ru consisted of separated islands. Although no continuous films could be obtained in this work the relatively high density of Cu islands obtained was a clear improvement as compared to the deposits grown with Cu(II) complexes. When ultra-thin Pd films were used as substrates, island growth was also observed. A likely reason for this extreme difference to the Cu films obtained on thicker Pd films is the lack of stress compensation within the thin films. The most likely source of stress compensation in the thicker Pd films is the formation of a graded interlayer between Pd and Cu by inter-diffusion. To obtain continuous Cu films on more materials, reduction of the growth temperature was required. This was achieved in the plasma assisted ALD experiments discussed in the second part of this work. The precursors evaluated included the AbaCus compound and CTA-1, an aliphatic Cu-bis(aminoalkoxide), which was supplied by Adeka Corp.. Depositions could be carried out at very low temperatures (60 °C Abacus, 30 °C CTA-1). Metallic Cu could be obtained on all substrate materials investigated, but the shape of the deposits varied significantly between the substrate materials. On most materials (Si, TaN, Al2O3, CDO) Cu grew in isolated nearly spherical islands even at temperatures as low as 30 °C. It was observed that the reason for the island formation is the coalescence of the initial islands to larger, spherical islands instead of forming a continuous film. On the other hand, the formation of nearly two-dimensional islands was observed on Ru. These islands grew together forming a conductive film after a reasonably small number of cycles. The resulting Cu films were of excellent crystal quality and had good electrical properties; e.g. a resistivity of 2.39 µΩ cm was measured for a 47 nm thick film. Moreover, conformal coating of narrow trenches (1 µm deep 100/1 aspect ratio) was demonstrated showing the feasibility of the ALD process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The functional properties of two types of barium strontium titanate (BST) thin film capacitor structures were studied: one set of structures was made using pulsed-laser deposition (PLD) and the other using chemical solution deposition. While initial observations on PLD films looking at the behavior of T-m (the temperature at which the maximum dielectric constant was observed) and T-c(*) (from Curie-Weiss analysis) suggested that the paraelectric-ferroelectric phase transition was progressively depressed in temperature as BST film thickness was reduced, further work suggested that this was not the case. Rather, it appears that the temperatures at which phase transitions occur in the thin films are independent of film thickness. Further, the fact that in many cases three transitions are observable, suggests that the sequence of symmetry transitions that occur in the thin films are the same as in bulk single crystals. This new observation could have implications for the validity of the theoretically produced thin film phase diagrams derived by Pertsev [Phys. Rev. Lett. 80, 1988 (1998)] and extended by Ban and Alpay [J. Appl. Phys. 91, 9288 (2002)]. In addition, the fact that T-m measured for virgin films does not correlate well with the inherent phase transition behavior, suggests that the use of T-m alone to infer information about the thermodynamics of thin film capacitor behavior, may not be sufficient. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectroscopic absorption and emission measurements have been used to study laser deposition of YBCO films. They show that >95% of the monatomic Y and Ba initially ablated from the target undergo gas-phase chemical combination before film deposition. In contrast, considerable monatomic Cu persists into the deposition region. in this region, equilibrated gas temperatures are of the order of 2700 K. It is suggested that this high temperature facilitates film crystallization and epitaxial growth. The survival of monatomic Cu in the plume to the site of deposition is a manifestation of its endothermic reaction with O-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SrMg^Rui-iOa thin films were made by using pulsed laser deposition on SrTiOa (100) substrates in either O2 or Ar atmosphere. The thin films were characterized by x-ray diffraction, energy dispersive x-ray microanalysis, dc resistivity measurement, and dc magnetization measurement. The effect of Mg doping was observed. As soon as the amount of Mg increased in SrMg-cRui-iOa thin films, the magnetization decreased, and the resistivity increased. It had little effect on the Curie temperature (transition temperature). The magnetization states of SrMgiRui-iOa thin films, for x < 0.15, are similar to SrRuOs films. X-ray diffraction results for SrMga-Rui-iOa thin films made in oxygen showed that the films are epitaxial. The thin films could not be well made in Ar atmosphere during laser ablation as there was no clear peak of SrMg^Rui-iOa in x-ray diffraction results. Substrate temperatures had an effect on the resistivity of the films. The residual resistivity ratios were increased by increasing substrate temperature. It was observed that the thickness of thin films are another factor for film quality: Thin films were epitaxial, but thicker films were not epitaxial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zinc oxide (ZnO) thin films were deposited on quartz, silicon, and polymer substrates by pulsed laser deposition (PLD) technique at different oxygen partial pressures (0.007 mbar to 0.003 mbar). Polycrystalline ZnO films were obtained at room temperature when the oxygen pressure was between 0.003 mbar and .007 mbar, above and below this pressure the films were amorphous as indicated by the X-ray diffraction (XRD). ZnO films were deposited on Al2O3 (0001) at different substrate temperatures varying from 400oC to 600oC and full width half maximum (FWHM) of XRD peak is observed to decrease as substrate temperature increases. The optical band gaps of these films were nearly 3.3 eV. A cylindrical Langmuir probe is used for the investigation of plasma plume arising from the ZnO target. The spatial and temporal variations in electron density and electron temperature are studied. Optical emission spectroscopy is used to identify the different ionic species in the plume. Strong emission lines of neutral Zn, Zn+ and neutral oxygen are observed. No electronically excited O+ cations are identified, which is in agreement with previous studies of ZnO plasma plume.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of flux angle, substrate temperature and deposition rate on obliquely deposited germanium (Ge) films has been investigated. By carrying out deposition with the vapor flux inclined at 87° to the substrate normal at substrate temperatures of 250°C or 300°C, it may be possible to obtain isolated Ge nanowires. The Ge nanowires are crystalline as shown by Raman Spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quenching of the photoluminescence of Si nanopowder grown by plasma-enhanced chemical vapor deposition due to pressure was measured for various gases ( H2, O2, N2, He, Ne, Ar, and Kr) and at different temperatures. The characteristic pressure, P0, of the general dependence I(P)=I0exp(-P/P0) is gas and temperature dependent. However, when the number of gas collisions is taken as the variable instead of pressure, then the quenching is the same within a gas family (mono- or diatomic) and it is temperature independent. So it is concluded that the effect depends on the number of gas collisions irrespective of the nature of the gas or its temperature

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using 4 years of radar and lidar observations of layer clouds from the Chilbolton Observatory in the UK, we show that almost all (95%) ice particles formed at temperatures >-20°C appear to originate from supercooled liquid clouds. At colder temperatures, there is a monotonic decline in the fraction of liquid-topped ice clouds: 50% at -27°C, falling to zero at -37°C (where homogeneous freezing of water droplets occurs). This strongly suggests that deposition nucleation plays a relatively minor role in the initiation of ice in mid-level clouds. It also means that the initial growth of the ice particles occurs predominantly within a liquid cloud, a situation which promotes rapid production of precipitation via the Bergeron-Findeison mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combined fluid inclusion (FI) microthermometry, Raman spectroscopy, X-ray diffraction, C-O-H isotopes and oxygen fugacities of granulites from central Ribeira Fold Belt, SE Brazil, provided the following results: i) Magnetite-Hematite fO(2) estimates range from 10(-11.5) bar (QFM + 1) to 10(-18.3) bar (QFM - 1) for the temperature range of 896 degrees C-656 degrees C, implying fO(2) decrease from metamorphic peak temperatures to retrograde conditions; ii) 5 main types of fluid inclusions were observed: a) CO(2) and CO(2)-N(2) (0-11 mol%) high to medium density (1.01-0.59 g/cm(3)) FI; b) CO(2) and CO(2)-N(2) (0-36 mol%) low density (0.19-0.29 g/cm(3)) FI; c) CO(2) (94-95 mol%)-N(2) (3 mol%)-CH(4) (2-3 mol%)-H(2)O (water phi(v) (25 degrees C) = 0.1) FI; d) low-salinity H(2)O-CO(2) FI; and e) late low-salinity H(2)O FI; iii) Raman analyses evidence two graphite types in khondalites: an early highly ordered graphite (T similar to 450 degrees C) overgrown by a disordered kind (T similar to 330 degrees C); iv) delta(18)O quartz results of 10.3-10.7 parts per thousand, imply high-temperature CO(2) delta(18)O values of 14.4-14.8 parts per thousand, suggesting the involvement of a metamorphic fluid, whereas lower temperature biotite delta(18)O and delta D results of 7.5-8.5 parts per thousand and -54 to -67 parts per thousand respectively imply H(2)O delta(18)O values of 10-11 parts per thousand and delta D(H2O) of -23 to -36 parts per thousand suggesting delta(18)O depletion and increasing fluid/rock ratio from metamorphic peak to retrograde conditions. Isotopic results are compatible with low-temperature H(2)O influx and fO(2) decrease that promoted graphite deposition in retrograde granulites, simultaneous with low density CO(2), CO(2)-N(2) and CO(2)-N(2)-CH(4)-H(2)O fluid inclusions at T = 450-330 degrees C. Graphite delta(13)C results of -10.9 to -11.4 parts per thousand imply CO(2) delta(13)C values of -0.8 to -1.3 parts per thousand suggesting decarbonation of Cambrian marine carbonates with small admixture of lighter biogenic or mantle derived fluids. Based on these results, it is suggested that metamorphic fluids from the central segment of Ribeira Fold Belt evolved to CO(2)-N(2) fluids during granulitic metamorphism at high fO(2), followed by rapid pressure drop at T similar to 400-450 degrees C during late exhumation that caused fO(2) reduction induced by temperature decrease and water influx, turning carbonic fluids into CO(2)-H(2)O (depleting biotite delta(18)O and delta D values), and progressively into H(2)O. When fO(2) decreased substantially by mixture of carbonic and aqueous fluids, graphite deposited forming khondalites. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SrBi2Ta2O9 ferroelectric thick films were prepared by electrophoretic deposition (EPD). For that, ceramic powders were prepared by chemical method in order to obtain compounds with chemical homogeneity. The polymeric precursor method was used for the synthesis of the SrBi2Ta2O9 powder. The crystallographic structure of the powder was examined by X-ray diffraction, and the surface area was determined by single point BET adsorption. The 0.03 vol.% suspension was formed by dispersing the powder in water using two different polymers as dispersants: an ester polyphosphate (C213) and an ammonium polyacrilate (Darvan 821-A). It was investigated the influence of the different dispersants in the surface properties of the powder by zeta potential measurements. The films were deposited on platinum-coated alumina and Pt/Ti/SiO2/Si substrates by a 4 mA constant current, for 10 min, using two parallel electrodes placed at a separation distance of 3 min in the suspension. Several cycles of deposition-drying of the deposit were carried out until reaching the desired thickness. After thermal treatment at temperatures ranging from 700 to 1000 degreesC, the films were characterized by X-ray diffraction and scanning electron microscopy for the microstructure observation. (C) 2003 Elsevier Ltd. All rights reserved.