925 resultados para Data clustering. Fuzzy C-Means. Cluster centers initialization. Validation indices


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several equipments and methodologies have been developed to make available precision agriculture, especially considering the high cost of its implantation and sampling. An interesting possibility is to define management zones aim at dividing producing areas in smaller management zones that could be treated differently, serving as a source of recommendation and analysis. Thus, this trial used physical and chemical properties of soil and yield aiming at the generation of management zones in order to identify whether they can be used as recommendation and analysis. Management zones were generated by the Fuzzy C-Means algorithm and their evaluation was performed by calculating the reduction of variance and performing means tests. The division of the area into two management zones was considered appropriate for the present distinct averages of most soil properties and yield. The used methodology allowed the generation of management zones that can serve as source of recommendation and soil analysis; despite the relative efficiency has shown a reduced variance for all attributes in divisions in the three sub-regions, the ANOVA did not show significative differences among the management zones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Precision agriculture (PA) allows farmers to identify and address variations in an agriculture field. Management zones (MZs) make PA more feasible and economical. The most important method for defining MZs is a fuzzy C-means algorithm, but selecting the variable for use as the input layer in the fuzzy process is problematic. BAZZI et al. (2013) used Moran’s bivariate spatial autocorrelation statistic to identify variables that are spatially correlated with yield while employing spatial autocorrelation. BAZZI et al. (2013) proposed that all redundant variables be eliminated and that the remaining variables would be considered appropriate on the MZ generation process. Thus, the objective of this work, a study case, was to test the hypothesis that redundant variables can harm the MZ delineation process. BAZZI This work was conducted in a 19.6-ha commercial field, and 15 MZ designs were generated by a fuzzy C-means algorithm and divided into two to five classes. Each design used a different composition of variables, including copper, silt, clay, and altitude. Some combinations of these variables produced superior MZs. None of the variable combinations produced statistically better performance that the MZ generated with no redundant variables. Thus, the other redundant variables can be discredited. The design with all variables did not provide a greater separation and organization of data among MZ classes and was not recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cerebral glioma is the most prevalent primary brain tumor, which are classified broadly into low and high grades according to the degree of malignancy. High grade gliomas are highly malignant which possess a poor prognosis, and the patients survive less than eighteen months after diagnosis. Low grade gliomas are slow growing, least malignant and has better response to therapy. To date, histological grading is used as the standard technique for diagnosis, treatment planning and survival prediction. The main objective of this thesis is to propose novel methods for automatic extraction of low and high grade glioma and other brain tissues, grade detection techniques for glioma using conventional magnetic resonance imaging (MRI) modalities and 3D modelling of glioma from segmented tumor slices in order to assess the growth rate of tumors. Two new methods are developed for extracting tumor regions, of which the second method, named as Adaptive Gray level Algebraic set Segmentation Algorithm (AGASA) can also extract white matter and grey matter from T1 FLAIR an T2 weighted images. The methods were validated with manual Ground truth images, which showed promising results. The developed methods were compared with widely used Fuzzy c-means clustering technique and the robustness of the algorithm with respect to noise is also checked for different noise levels. Image texture can provide significant information on the (ab)normality of tissue, and this thesis expands this idea to tumour texture grading and detection. Based on the thresholds of discriminant first order and gray level cooccurrence matrix based second order statistical features three feature sets were formulated and a decision system was developed for grade detection of glioma from conventional T2 weighted MRI modality.The quantitative performance analysis using ROC curve showed 99.03% accuracy for distinguishing between advanced (aggressive) and early stage (non-aggressive) malignant glioma. The developed brain texture analysis techniques can improve the physician’s ability to detect and analyse pathologies leading to a more reliable diagnosis and treatment of disease. The segmented tumors were also used for volumetric modelling of tumors which can provide an idea of the growth rate of tumor; this can be used for assessing response to therapy and patient prognosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ice core data from Antarctica provide detailed insights into the characteristics of past climate, atmospheric circulation, as well as changes in the aerosol load of the atmosphere. We present high-resolution records of soluble calcium (Ca2+), non-sea-salt soluble calcium (nssCa2+), and particulate mineral dust aerosol from the East Antarctic Plateau at a depth resolution of 1 cm, spanning the past 800 000 years. Despite the fact that all three parameters are largely dust-derived, the ratio of nssCa2+ to particulate dust is dependent on the particulate dust concentration itself. We used principal component analysis to extract the joint climatic signal and produce a common high-resolution record of dust flux. This new record is used to identify Antarctic warming events during the past eight glacial periods. The phasing of dust flux and CO2 changes during glacial-interglacial transitions reveals that iron fertilization of the Southern Ocean during the past nine glacial terminations was not the dominant factor in the deglacial rise of CO2 concentrations. Rapid changes in dust flux during glacial terminations and Antarctic warming events point to a rapid response of the southern westerly wind belt in the region of southern South American dust sources on changing climate conditions. The clear lead of these dust changes on temperature rise suggests that an atmospheric reorganization occurred in the Southern Hemisphere before the Southern Ocean warmed significantly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-parametric and quantitative magnetic resonance imaging (MRI) techniques have come into the focus of interest, both as a research and diagnostic modality for the evaluation of patients suffering from mild cognitive decline and overt dementia. In this study we address the question, if disease related quantitative magnetization transfer effects (qMT) within the intra- and extracellular matrices of the hippocampus may aid in the differentiation between clinically diagnosed patients with Alzheimer disease (AD), patients with mild cognitive impairment (MCI) and healthy controls. We evaluated 22 patients with AD (n=12) and MCI (n=10) and 22 healthy elderly (n=12) and younger (n=10) controls with multi-parametric MRI. Neuropsychological testing was performed in patients and elderly controls (n=34). In order to quantify the qMT effects, the absorption spectrum was sampled at relevant off-resonance frequencies. The qMT-parameters were calculated according to a two-pool spin-bath model including the T1- and T2 relaxation parameters of the free pool, determined in separate experiments. Histograms (fixed bin-size) of the normalized qMT-parameter values (z-scores) within the anterior and posterior hippocampus (hippocampal head and body) were subjected to a fuzzy-c-means classification algorithm with downstreamed PCA projection. The within-cluster sums of point-to-centroid distances were used to examine the effects of qMT- and diffusion anisotropy parameters on the discrimination of healthy volunteers, patients with Alzheimer and MCIs. The qMT-parameters T2(r) (T2 of the restricted pool) and F (fractional pool size) differentiated between the three groups (control, MCI and AD) in the anterior hippocampus. In our cohort, the MT ratio, as proposed in previous reports, did not differentiate between MCI and AD or healthy controls and MCI, but between healthy controls and AD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-resolution multi-proxy study of core MD99-2286 reveals a highly variable hydrographic environment in the Skagerrak from 9300 cal. yr BP to the present. The study includes foraminiferal faunas, stable isotopes and sedimentary parameters, as well as temperature and salinity reconstructions of a ca. 29 m long radiocarbon-dated core record. The multivariate technique fuzzy c-means was applied to the foraminiferal counts, and it was extremely valuable in defining subtle heterogeneities in the foraminiferal fauna data corresponding to hydrographic changes. The major mid-Holocene (Littorina) transgression, led to flooding of large former land areas in the North Sea, the opening of the English Channel and Danish straits and initiation of the modern circulation system. This is reflected by fluctuating C/N values and an explosive bloom of Hyalinea balthica. A slight indication of ameliorated conditions between 8000-5750 cal. yr BP is related to the Holocene Thermal Maximum. A subsequent increase in fresh water/Baltic water influence between 5750-4350 cal. yr BP is reflected by dominance of Bulimina marginata and depleted d18O-values. The Neoglacial cooling (after 4350 cal. yr BP) is seen in the Skagerrak as enhanced turbidity, increasing TOC-values and short-term changes in an overall Cassidulina laevigata dominated fauna suggesting a prevailing influence of Atlantic waters. This is in agreement with increased strength of westerly winds, as recorded for this period. The last 2000 years were also dominated by Atlantic Water conditions with generally abundant nutrient supply. However, during warm periods, particularly the Medieval Warm Period and the modern warming, the area was subject to a restriction in the supply of nutrients and/or the nutrient supply had a more refractory character.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a method to detect Microcalcifications in Regions of Interest from digitized mammograms. The method is based mainly on the combination of Image Processing, Pattern Recognition and Artificial Intelligence. The Top-Hat transform is a technique based on mathematical morphology operations that, in this work is used to perform contrast enhancement of microcalcifications in the region of interest. In order to find more or less homogeneous regions in the image, we apply a novel image sub-segmentation technique based on Possibilistic Fuzzy c-Means clustering algorithm. From the original region of interest we extract two window-based features, Mean and Deviation Standard, which will be used in a classifier based on a Artificial Neural Network in order to identify microcalcifications. Our results show that the proposed method is a good alternative in the stage of microcalcifications detection, because this stage is an important part of the early Breast Cancer detection

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nivel mundial, el cáncer de mama es el tipo de cáncer más frecuente además de una de las principales causas de muerte entre la población femenina. Actualmente, el método más eficaz para detectar lesiones mamarias en una etapa temprana es la mamografía. Ésta contribuye decisivamente al diagnóstico precoz de esta enfermedad que, si se detecta a tiempo, tiene una probabilidad de curación muy alta. Uno de los principales y más frecuentes hallazgos en una mamografía, son las microcalcificaciones, las cuales son consideradas como un indicador importante de cáncer de mama. En el momento de analizar las mamografías, factores como la capacidad de visualización, la fatiga o la experiencia profesional del especialista radiólogo hacen que el riesgo de omitir ciertas lesiones presentes se vea incrementado. Para disminuir dicho riesgo es importante contar con diferentes alternativas como por ejemplo, una segunda opinión por otro especialista o un doble análisis por el mismo. En la primera opción se eleva el coste y en ambas se prolonga el tiempo del diagnóstico. Esto supone una gran motivación para el desarrollo de sistemas de apoyo o asistencia en la toma de decisiones. En este trabajo de tesis se propone, se desarrolla y se justifica un sistema capaz de detectar microcalcificaciones en regiones de interés extraídas de mamografías digitalizadas, para contribuir a la detección temprana del cáncer demama. Dicho sistema estará basado en técnicas de procesamiento de imagen digital, de reconocimiento de patrones y de inteligencia artificial. Para su desarrollo, se tienen en cuenta las siguientes consideraciones: 1. Con el objetivo de entrenar y probar el sistema propuesto, se creará una base de datos de imágenes, las cuales pertenecen a regiones de interés extraídas de mamografías digitalizadas. 2. Se propone la aplicación de la transformada Top-Hat, una técnica de procesamiento digital de imagen basada en operaciones de morfología matemática. La finalidad de aplicar esta técnica es la de mejorar el contraste entre las microcalcificaciones y el tejido presente en la imagen. 3. Se propone un algoritmo novel llamado sub-segmentación, el cual está basado en técnicas de reconocimiento de patrones aplicando un algoritmo de agrupamiento no supervisado, el PFCM (Possibilistic Fuzzy c-Means). El objetivo es encontrar las regiones correspondientes a las microcalcificaciones y diferenciarlas del tejido sano. Además, con la finalidad de mostrar las ventajas y desventajas del algoritmo propuesto, éste es comparado con dos algoritmos del mismo tipo: el k-means y el FCM (Fuzzy c-Means). Por otro lado, es importante destacar que en este trabajo por primera vez la sub-segmentación es utilizada para detectar regiones pertenecientes a microcalcificaciones en imágenes de mamografía. 4. Finalmente, se propone el uso de un clasificador basado en una red neuronal artificial, específicamente un MLP (Multi-layer Perceptron). El propósito del clasificador es discriminar de manera binaria los patrones creados a partir de la intensidad de niveles de gris de la imagen original. Dicha clasificación distingue entre microcalcificación y tejido sano. ABSTRACT Breast cancer is one of the leading causes of women mortality in the world and its early detection continues being a key piece to improve the prognosis and survival. Currently, the most reliable and practical method for early detection of breast cancer is mammography.The presence of microcalcifications has been considered as a very important indicator ofmalignant types of breast cancer and its detection and classification are important to prevent and treat the disease. However, the detection and classification of microcalcifications continue being a hard work due to that, in mammograms there is a poor contrast between microcalcifications and the tissue around them. Factors such as visualization, tiredness or insufficient experience of the specialist increase the risk of omit some present lesions. To reduce this risk, is important to have alternatives such as a second opinion or a double analysis for the same specialist. In the first option, the cost increases and diagnosis time also increases for both of them. This is the reason why there is a great motivation for development of help systems or assistance in the decision making process. This work presents, develops and justifies a system for the detection of microcalcifications in regions of interest extracted fromdigitizedmammographies to contribute to the early detection of breast cancer. This systemis based on image processing techniques, pattern recognition and artificial intelligence. For system development the following features are considered: With the aim of training and testing the system, an images database is created, belonging to a region of interest extracted from digitized mammograms. The application of the top-hat transformis proposed. This image processing technique is based on mathematical morphology operations. The aim of this technique is to improve the contrast betweenmicrocalcifications and tissue present in the image. A novel algorithm called sub-segmentation is proposed. The sub-segmentation is based on pattern recognition techniques applying a non-supervised clustering algorithm known as Possibilistic Fuzzy c-Means (PFCM). The aim is to find regions corresponding to the microcalcifications and distinguish them from the healthy tissue. Furthermore,with the aim of showing themain advantages and disadvantages this is compared with two algorithms of same type: the k-means and the fuzzy c-means (FCM). On the other hand, it is important to highlight in this work for the first time the sub-segmentation is used for microcalcifications detection. Finally, a classifier based on an artificial neural network such as Multi-layer Perceptron is used. The purpose of this classifier is to discriminate froma binary perspective the patterns built from gray level intensity of the original image. This classification distinguishes between microcalcifications and healthy tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Twitter System is the biggest social network in the world, and everyday millions of tweets are posted and talked about, expressing various views and opinions. A large variety of research activities have been conducted to study how the opinions can be clustered and analyzed, so that some tendencies can be uncovered. Due to the inherent weaknesses of the tweets - very short texts and very informal styles of writing - it is rather hard to make an investigation of tweet data analysis giving results with good performance and accuracy. In this paper, we intend to attack the problem from another aspect - using a two-layer structure to analyze the twitter data: LDA with topic map modelling. The experimental results demonstrate that this approach shows a progress in twitter data analysis. However, more experiments with this method are expected in order to ensure that the accurate analytic results can be maintained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar o potencial da espectroscopia de reflectância no VIS-NIR-SWIR, para a caracterização granulométrica de amostras de solos de diferentes classes texturais, e obter modelos de predição dos teores de argila, silte e areia no solo. Utilizou-se um conjunto de amostras representativas de Latossolos e Argissolo de cinco locais do Estado do Mato Grosso do Sul. Os espectros do visível e do infravermelho próximo ao infravermelho de ondas curtas (de 350 a 2.500 nm) das amostras foram obtidos e analisados. Empregaram-se a análise de componentes principais (ACP), agrupamento por "fuzzy c-means", regressão logística multinomial (RLM) e regressão por mínimos quadrados parciais. Espectros característicos para as diferentes classes texturais e a segregação de amostras de classes texturais e de locais de coleta com características distintas, por meio da ACP, "fuzzy c-means" e RLM, mostram o potencial semiquantitativo dos dados de reflectância no VIS-NIR-SWIR. Obteve-se quantificação satisfatória quanto à argila (R²=0,92, RPD=3,59), ao silte (R²=0,80, RPD=2,15) e à areia (R²=0,87, RPD=2,62). As técnicas de espectroscopia de reflectância podem auxiliar na determinação da textura e da variabilidade espacial do solo com metodologias semiquantitativas ou quantitativas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabajo esta orientado a resolver el problema de la caracterización de la copa de arboles frutales para la aplicacion localizada de fitosanitarios. Esta propuesta utiliza un mapa de profundidad (Depth image) y una imagen RGB combinadas (RGB-D), proporcionados por el sensor Kinect de Microsoft, para aplicar pesticidas de forma localizada. A través del mapa de profundidad se puede estimar la densidad de la copa y a partir de esta información determinar qué boquillas se deben abrir en cada momento. Se desarrollaron algoritmos implementados en Matlab que permiten además de la adquisición de las imágenes RGB-D, aplicar plaguicidas sólo a hojas y/o frutos según se desee. Estos algoritmos fueron implementados en un software que se comunica con el entorno de desarrollo "Kinect Windows SDK", encargado de extraer las imágenes desde el sensor Kinect. Por otra parte, para identificar hojas, se implementaron algoritmos de clasificación e identificación. Los algoritmos de clasificación utilizados fueron "Fuzzy C-Means con Gustafson Kessel" (FCM-GK) y "K-Means". Los centroides o prototipos de cada clase generados por FCM-GK fueron usados como semilla para K-Means, para acelerar la convergencia del algoritmo y mantener la coherencia temporal en los grupos generados por K-Means. Los algoritmos de clasificación fueron aplicados sobre las imágenes transformadas al espacio de color L*a*b*; específicamente se emplearon los canales a*, b* (canales cromáticos) con el fin de reducir el efecto de la luz sobre los colores. Los algoritmos de clasificación fueron configurados para buscar cuatro grupos: hojas, porosidad, frutas y tronco. Una vez que el clasificador genera los prototipos de los grupos, un clasificador denominado Máquina de Soporte Vectorial, que utiliza como núcleo una función Gaussiana base radial, identifica la clase de interés (hojas). La combinación de estos algoritmos ha mostrado bajos errores de clasificación, rendimiento del 4% de error en la identificación de hojas. Además, estos algoritmos de procesamiento de hasta 8.4 imágenes por segundo, lo que permite su aplicación en tiempo real. Los resultados demuestran la viabilidad de utilizar el sensor "Kinect" para determinar dónde y cuándo aplicar pesticidas. Por otra parte, también muestran que existen limitaciones en su uso, impuesta por las condiciones de luz. En otras palabras, es posible usar "Kinect" en exteriores, pero durante días nublados, temprano en la mañana o en la noche con iluminación artificial, o añadiendo un parasol en condiciones de luz intensa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abdominal Aortic Aneurism is a disease related to a weakening in the aortic wall that can cause a break in the aorta and the death. The detection of an unusual dilatation of a section of the aorta is an indicative of this disease. However, it is difficult to diagnose because it is necessary image diagnosis using computed tomography or magnetic resonance. An automatic diagnosis system would allow to analyze abdominal magnetic resonance images and to warn doctors if any anomaly is detected. We focus our research in magnetic resonance images because of the absence of ionizing radiation. Although there are proposals to identify this disease in magnetic resonance images, they need an intervention from clinicians to be precise and some of them are computationally hard. In this paper we develop a novel approach to analyze magnetic resonance abdominal images and detect the lumen and the aortic wall. The method combines different algorithms in two stages to improve the detection and the segmentation so it can be applied to similar problems with other type of images or structures. In a first stage, we use a spatial fuzzy C-means algorithm with morphological image analysis to detect and segment the lumen; and subsequently, in a second stage, we apply a graph cut algorithm to segment the aortic wall. The obtained results in the analyzed images are pretty successful obtaining an average of 79% of overlapping between the automatic segmentation provided by our method and the aortic wall identified by a medical specialist. The main impact of the proposed method is that it works in a completely automatic way with a low computational cost, which is of great significance for any expert and intelligent system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the computational efficiency of fuzzy clustering algorithms when the data set to be clustered is described by a proximity matrix only (relational data) and the number of clusters must be automatically estimated from such data. A fuzzy variant of an evolutionary algorithm for relational clustering is derived and compared against two systematic (pseudo-exhaustive) approaches that can also be used to automatically estimate the number of fuzzy clusters in relational data. An extensive collection of experiments involving 18 artificial and two real data sets is reported and analyzed. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper tackles the problem of showing that evolutionary algorithms for fuzzy clustering can be more efficient than systematic (i.e. repetitive) approaches when the number of clusters in a data set is unknown. To do so, a fuzzy version of an Evolutionary Algorithm for Clustering (EAC) is introduced. A fuzzy cluster validity criterion and a fuzzy local search algorithm are used instead of their hard counterparts employed by EAC. Theoretical complexity analyses for both the systematic and evolutionary algorithms under interest are provided. Examples with computational experiments and statistical analyses are also presented.