980 resultados para DNA methyltransferase 1


Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is known that DNA-binding proteins can slide along the DNA helix while searching for specific binding sites, but their path of motion remains obscure. Do these proteins undergo simple one-dimensional (1D) translational diffusion, or do they rotate to maintain a specific orientation with respect to the DNA helix? We measured 1D diffusion constants as a function of protein size while maintaining the DNA-protein interface. Using bootstrap analysis of single-molecule diffusion data, we compared the results to theoretical predictions for pure translational motion and rotation-coupled sliding along the DNA. The data indicate that DNA-binding proteins undergo rotation-coupled sliding along the DNA helix and can be described by a model of diffusion along the DNA helix on a rugged free-energy landscape. A similar analysis including the 1D diffusion constants of eight proteins of varying size shows that rotation-coupled sliding is a general phenomenon. The average free-energy barrier for sliding along the DNA was 1.1 +/- 0.2 k(B)T. Such small barriers facilitate rapid search for binding sites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

All protein-encoding genes in eukaryotes are transcribed into messenger RNA (mRNA) by RNA Polymerase II (RNAP II), whose activity therefore needs to be tightly controlled. An important and only partially understood level of regulation is the multiple phosphorylations of RNAP II large subunit C-terminal domain (CTD). Sequential phosphorylations regulate transcription initiation and elongation, and recruit factors involved in co-transcriptional processing of mRNA. Based largely on studies in yeast models and in vitro, the kinase activity responsible for the phosphorylation of the serine-5 (Ser5) residues of RNAP II CTD has been attributed to the Mat1/Cdk7/CycH trimer as part of Transcription Factor IIH. However, due to the lack of good mammalian genetic models, the roles of both RNAP II Ser5 phosphorylation as well as TFIIH kinase in transcription have provided ambiguous results and the in vivo kinase of Ser5 has remained elusive. The primary objective of this study was to elucidate the role of mammalian TFIIH, and specifically the Mat1 subunit in CTD phosphorylation and general RNAP II-mediated transcription. The approach utilized the Cre-LoxP system to conditionally delete murine Mat1 in cardiomyocytes and hepatocytes in vivo and and in cell culture models. The results identify the TFIIH kinase as the major mammalian Ser5 kinase and demonstrate its requirement for general transcription, noted by the use of nascent mRNA labeling. Also a role for Mat1 in regulating general mRNA turnover was identified, providing a possible rationale for earlier negative findings. A secondary objective was to identify potential gene- and tissue-specific roles of Mat1 and the TFIIH kinase through the use of tissue-specific Mat1 deletion. Mat1 was found to be required for the transcriptional function of PGC-1 in cardiomyocytes. Transriptional activation of lipogenic SREBP1 target genes following Mat1 deletion in hepatocytes revealed a repressive role for Mat1apparently mediated via co-repressor DMAP1 and the DNA methyltransferase Dnmt1. Finally, Mat1 and Cdk7 were also identified as a negative regulators of adipocyte differentiation through the inhibitory phosphorylation of Peroxisome proliferator-activated receptor (PPAR) γ. Together, these results demonstrate gene- and tissue-specific roles for the Mat1 subunit of TFIIH and open up new therapeutic possibilities in the treatment of diseases such as type II diabetes, hepatosteatosis and obesity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A cytosine-specific DNA methyltransferase (EC 2.1.1.37) has been purified to near homogeneity from a mealybug (Planococcus lilacinus). The enzyme can methylate cytosine residues in CpG sequences as well as CpA sequences. The apparent molecular weight of the enzyme was estimated as 135,000 daltons by FPLC. The enzyme exhibits a processive mode of action and a salt dependance similar to mammalian methylases. Mealybug methylase exhibits a preference for denatured DNA substrates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microbes in natural and artificial environments as well as in the human body are a key part of the functional properties of these complex systems. The presence or absence of certain microbial taxa is a correlate of functional status like risk of disease or course of metabolic processes of a microbial community. As microbes are highly diverse and mostly notcultivable, molecular markers like gene sequences are a potential basis for detection and identification of key types. The goal of this thesis was to study molecular methods for identification of microbial DNA in order to develop a tool for analysis of environmental and clinical DNA samples. Particular emphasis was placed on specificity of detection which is a major challenge when analyzing complex microbial communities. The approach taken in this study was the application and optimization of enzymatic ligation of DNA probes coupled with microarray read-out for high-throughput microbial profiling. The results show that fungal phylotypes and human papillomavirus genotypes could be accurately identified from pools of PCR amplicons generated from purified sample DNA. Approximately 1 ng/μl of sample DNA was needed for representative PCR amplification as measured by comparisons between clone sequencing and microarray. A minimum of 0,25 amol/μl of PCR amplicons was detectable from amongst 5 ng/μl of background DNA, suggesting that the detection limit of the test comprising of ligation reaction followed by microarray read-out was approximately 0,04%. Detection from sample DNA directly was shown to be feasible with probes forming a circular molecule upon ligation followed by PCR amplification of the probe. In this approach, the minimum detectable relative amount of target genome was found to be 1% of all genomes in the sample as estimated from 454 deep sequencing results. Signal-to-noise of contact printed microarrays could be improved by using an internal microarray hybridization control oligonucleotide probe together with a computational algorithm. The algorithm was based on identification of a bias in the microarray data and correction of the bias as shown by simulated and real data. The results further suggest semiquantitative detection to be possible by ligation detection, allowing estimation of target abundance in a sample. However, in practise, comprehensive sequence information of full length rRNA genes is needed to support probe design with complex samples. This study shows that DNA microarray has the potential for an accurate microbial diagnostic platform to take advantage of increasing sequence data and to replace traditional, less efficient methods that still dominate routine testing in laboratories. The data suggests that ligation reaction based microarray assay can be optimized to a degree that allows good signal-tonoise and semiquantitative detection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Restriction endonucleases interact with DNA at specific sites leading to cleavage of DNA. Bacterial DNA is protected from restriction endonuclease cleavage by modifying the DNA using a DNA methyltransferase. Based on their molecular structure, sequence recognition, cleavage position and cofactor requirements, restriction-modification (R-M) systems are classified into four groups. Type III R-M enzymes need to interact with two separate unmethylated DNA sequences in inversely repeated head-to-head orientations for efficient cleavage to occur at a defined location (25-27 bp downstream of one of the recognition sites). Like the Type I R-M enzymes, Type III R-M enzymes possess a sequence-specific ATPase activity for DNA cleavage. ATP hydrolysis is required for the long-distance communication between the sites before cleavage. Different models, based on 1D diffusion and/or 3D-DNA looping, exist to explain how the long-distance interaction between the two recognition sites takes place. Type III R-M systems are found in most sequenced bacteria. Genome sequencing of many pathogenic bacteria also shows the presence of a number of phase-variable Type III R-M systems, which play a role in virulence. A growing number of these enzymes are being subjected to biochemical and genetic studies, which, when combined with ongoing structural analyses, promise to provide details for mechanisms of DNA recognition and catalysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1990年,Williams和Welsh领导的2个小组几乎同时独立地发展起来一项新技术,即随机扩增多态DNA(Random amplified polymorphic DNA,RAPD).该技术通过PCR进行DNA扩增,所用引物是G+C含量为50%—70%的单个随机短引物,这些引物在一定的退火条件下能与基因组DNA中的互补顺序配对,启动DNA的合成.RAPD具有以下特点:(1)无需预先知道受试有机体基因组DNA的序列,因而能应用于所用的生物体;(2)绝大多数

Relevância:

90.00% 90.00%

Publicador:

Resumo:

采用微量DNA提取技术,从梅花鹿血、毛、鹿鞭、鹿茸、牛鞭、驴鞭中提取DNA,以线粒体DNA细胞色素b通用引物L14841和H15149扩增约307bpDNA片段, 扩增产物纯化后采用双脱氧链终止法测定其序列。结果证明:梅花鹿毛、血和鹿鞭的DNA序列完全一致; 而所谓的“鹿茸”则与其有较大的差异。用所测序列以简约法PAUP3.1.1 程序构建的分子系统树与传统分类系统相吻合。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cytosine methylation is important for transposon silencing and epigenetic regulation of endogenous genes, although the extent to which this DNA modification functions to regulate the genome is still unknown. Here we report the first comprehensive DNA methylation map of an entire genome, at 35 base pair resolution, using the flowering plant Arabidopsis thaliana as a model. We find that pericentromeric heterochromatin, repetitive sequences, and regions producing small interfering RNAs are heavily methylated. Unexpectedly, over one-third of expressed genes contain methylation within transcribed regions, whereas only approximately 5% of genes show methylation within promoter regions. Interestingly, genes methylated in transcribed regions are highly expressed and constitutively active, whereas promoter-methylated genes show a greater degree of tissue-specific expression. Whole-genome tiling-array transcriptional profiling of DNA methyltransferase null mutants identified hundreds of genes and intergenic noncoding RNAs with altered expression levels, many of which may be epigenetically controlled by DNA methylation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

运用21种限制性内切酶对银细自然群体进行了mtDNA的限制性片断长度多态性 (RFLP)分析。发现银姻自然群体存在丰富的mtDNA多态性,从4个群体39个个体中,共检测 到12种单倍型,对这一现象的成因进行了探讨。依据单倍型和群体的系统发育关系,结合地 理分布的资料,对其现今分布区相互间的历史联系及其对银姻起源和分化的影响进行了分析。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

为了解云南保山猪(Baoshan pig)的遗传多样性及其遗传背景,我们测定了19个个体线粒体DNA Dloop高变区1 1 5 363 - 1 5 801片段序列438帅。检测到1。种单倍型,包括8个多态位点,其中5次T/ C转换、1次G/ A转换、1次G/ C颠换和1次A/ T颠换,其A.T.GX碱基的平均含量分别为35.4%.26.9%.13.2%和24.5 %,A+ T含量(62 .3)明显高于G+ C含量(37 .7 %)。对于保山猪的保种及其持续利用有着重要的理论指导意义。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

16种限制性内切酶对150个样本进行了mtDNA的限制性片段长度多态性(RFLP)分析。共检测到31种限制性格局, 其中Hae Ⅱ-13型、EcoRV-3型和PstⅠ-型3种限制性格局 为新报道。综合这些限制性格局, 共得出28种mtDNA类型。运用UPG法和简约法分析了各mtDNA类型之间、各人群之间的聚类关系。结果表明: 水族人群的mtDNA变异度较大; 汉族和苗族的亲缘关系最近, 布依族和水族有着较远的亲缘关系。图4表4参28

Relevância:

90.00% 90.00%

Publicador:

Resumo:

目的:探讨HIV-1感染是否影响细胞中UNG2的表达.方法:采用四步法SYBR green Ⅰ实时定量RT-PCR,对HIV-1感染者的T和B淋巴细胞,以及HIV-1感染的C8166细胞核内UNG2 mRNA的表达进行测定.结果:UNG2 mRNA的表达在HIV-1感染者的T细胞和HIV-1感染的C8166细胞中被明显上调,分别是对照的8.76倍和8.14倍,而在HIV-1感染者的B细胞中却没有被上调.结论:HIV-1感染导致的UNG2表达上调,可能通过减少TCR的多样性削弱Th的功能,另一方面可能有利于病毒对UNG2的包装.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

用人源小卫星探针33.6和33.15获得了两个家系猪的DNA指纹图谱。通过对F1和F2代家系分析,证实DNA指纹图带以孟德尔方式遗传。在家系2(探针33.6)的1个后代中发现了一条新突变带。文中还对这两个探针检测到的位点数进行了估测。