856 resultados para Controlled Drug Delivery


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flexible, transparent, and insoluble urea-cross-linked polyether-siloxane hybrids presenting a tunable drug delivery pattern were prepared using the sol-gel method from PEO (poly(ethylene oxide)) and PPO (poly(propylene oxide)) functionalized at both chain ends with triethoxysilane. Different polyether chain lengths were used to control the urea/siloxane (named ureasil) node density, flexibility, and swellability of the hybrid network. We herein demonstrate that the drug release from swellable hydrophilic ureasil-PEO hybrids can be sustained for some days, whereas that from the unswellable ureasil-PPO hybrids can be sustained for some weeks. This outstanding feature conjugated with the biomedically safe formulation of the ureasil cross-linked polyether-siloxane hybrid widens their scope of application to include the domain of soft and implantable drug delivery devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study described the formulation and characterisation of the viscoelastic, mechanical and mucoadhesive properties of thermoresponsive, binary polymeric systems composed of poloxamer (P407) and poly(acrylic acid, C974P) that were designed for use as a drug delivery platform within the oral cavity. Monopolymeric and binary polymeric formulations were prepared containing 10, 15 and 20% (w/w) poloxamer (407) and 0.10-0.25% (w/w) poly(acrylic acid, 934P). The flow theological and viscoelastic properties of the formulations were determined using controlled stress and oscillatory rheometry, respectively, the latter as a function of temperature. The mechanical and mucoadhesive properties (namely the force required to break the bond between the formulation and a pre-hydrated mucin disc) were determined using compression and tensile analysis, respectively. Binary systems composed of 10% (w/w) P407 and C934P were elastoviscous, were easily deformed under stress and did not exhibit mucoadhesion. Formulations containing 15 or 20% (w/w) Pluronic P407 and C934P exhibited a sol-gel temperature T(sol/gel), were viscoelastic and offered high elasticity and resistance to deformation at 37 degrees C. Conversely these formulations were elastoviscous and easily deformed at temperatures below the sol-gel transition temperature. The sol-gel transition temperatures of systems containing 15% (w/w) P407 were unaffected by the presence of C934P; however, increasing the concentration of C934P decreased the T(sol/gel) in formulations containing 20%(w/w) P407. Rheological synergy between P407 and C934P at 37 degrees C was observed and was accredited to secondary interactions between these polymers, in addition to hydrophobic interactions between P407 micelles. Importantly, formulations composed of 20% (w/w) P407 and C934P exhibited pronounced mucoadhesive properties. The ease of administration (below the T(sol/gel)) in conjunction with the viscoelastic (notably high elasticity) and mucoadhesive properties (at body temperature) render the formulations composed of 20% (w/w) P407 and C934P as potentially useful platforms for mucoadhesive, controlled topical drug delivery within the oral cavity. (c) 2009 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work pellets containing chitosan for colonic drug delivery were developed. The influence of the polysaccharide in the pellets was evaluated by swelling, drug dissolution and intestinal permeation studies. Drug-loaded pellets containing chitosan as swellable polymer were coated with an inner layer of Kollicoat® SR 30 D and an outer layer of the enteric polymer Kollicoat® MAE 30 DP in a fluidized-bed apparatus. Metronidazole released from pellets was assessed using Bio-Dis dissolution method. Swelling, drug release and intestinal permeation were dependent on the chitosan and the coating composition. The drug release data fitted well with the Weibull equation, indicating that the drug release was controlled by diffusion, polymer relaxation and erosion occurring simultaneously. The film coating was found to be the main factor controlling the drug release and the chitosan controlling the drug intestinal permeation. Coated pellets containing chitosan show great potential as a system for drug delivery to the colon. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inspiriert durch natürlich vorkommende Peptide, sind Poly(2-oxazoline) vielversprechende Kandidaten für Anwendungen in Bereichen des kontrollierten Wirkstoff- bzw. Gentransportes, wie die moderne Biomedizin dies fordert. Da Polyoxazoline als strukturisomere Amide von natürlichen Polypeptiden aufgefasst werden können, zeigen diese synthetischen Polymere in direktem Vergleich erhebliche Vorteile etwa hinsichtlich Zytotoxizät und Effizienz, was wesentlich dazu beitragen kann, aktuelle Hürden biomedizinischer Fragestellungen hinsichtlich Transport und Targeting zu überwinden. Darüber hinaus sollten zylindrische Polymerbürsten aufgrund ihrer molekularen, architekturbedingten Formanisotropie und jüngsten Ergebnissen insbesondere zur formabhängigen Endozytose sehr aussichtsreiche Kandidaten für den Einsatz zum Wirkstofftransport sein.rnrnDie vorliegende Arbeit widmete sich deshalb der Synthese und Charakterisierung von biokompatiblen zylindrischen Poly(2-oxazolin)bürsten als potentielle Nanotransporter von Wirkstoffen, Biomolekülen oder genetischem Material. Als Monomer wurde zunächst 2-Isopropyloxazolin gewählt, da das Polymer eine Phasenübergangstemperatur von 37 °C besitzt, was für Konjugatsynthesen wie auch diverse biomedizinische Applikationen interessant sein kann. Durch terminierende Methacrylamid Funktionalisierung der lebenden kationischen Oxazolinpolymerisation bzw. nachfolgende Endgruppen Transferreaktionen sind Makromonomere im Bereich 1000-5000 g/mol zugänglich. Erstmals gelang es so 2-Oxazolin basierte, hochmolekulare zylindrische Bürsten mit Konturlängen im Bereich von 250 nm mittels „Grafting Through“ Technik in freier radikalischer Polymerisation herzustellen.rnrnAusgehend von der entwickelten Syntheseroute konnten so neben Homo- und Blockcopolymerbürsten von 2-Ethyl-2-oxazolin und 2-Isopropyl-2-oxazolin auch Bürstenmoleküle aus statistischen Copolymeren von 2-Ethyl-2-oxazolin und unsubstituiertem 2-Oxazolin hergestellt werden. Während letztere die Einführung kationischer Gruppen durch selektivere Abspaltmethoden der Formylreste erlauben und so etwa DNA/RNA Komplexierungen ermöglichen können, bietet andererseits der in dieser Arbeit erstmalig demonstrierte Einsatz Azid-funktionalisierter Initiatoren zur kationischen Oxazolinpolymerisation unter Beibehaltung aller anderen sonstigen Reaktionsschritte auch die Möglichkeit der Synthese Azid-Endgruppen-funktionalisierter Makromonomere. Die „Grafting Through“ Methodik der freien radikalischen Makromonomer Polymerisation ist selbst bei diesen funktionalisierten Systemen von großem Vorteil, erlaubt sie auch hier den Zugang zu hochmolekularen Substraten mit einem Pfropfungs- bzw. Funktionalisierungsgrad von 100 %, da jede Seitenkette dieser zylindrischen Bürsten die aussenliegende, und damit sterisch leichter zugängliche funktionale Gruppe trägt. Dabei gelang es die Syntheseroute so zu gestalten, dass es möglich war alle vorgestellten Polymerbürsten mittels statischer und dynamischer Lichtstreuung hinsichtlich absoluter Molmasse und molekularer Dimension zu charakterisieren.rnIn weitereren Reaktionen konnten dann reaktive Fluoreszenzfarbstoffe mit Hilfe kupferfreier 1,3 dipolarerer Addition (kupferfreie „Click-Chemie“) an die Azid-funktionalisierten Polymerbürsten angebunden werden, so dass eine wesentliche Voraussetzung für die Detektion in in vivo und in vitro Experimenten erfüllt werden kann. Darüber hinaus gelingt die quantitative polymeranaloge Umsetzung der Azid- zu Aminogruppen durch eine polymeranalog geführte Reduktion nach Staudinger; damit können an diesen Systemen auch etablierte Konjugationstechniken an Aminogruppen durchgeführt werden. Zudem erlauben die Aminogruppen-haltigen Polymerbürsten durch Protonierung schon bei physiologischem pH die Komplexierung von DNA oder RNA. rnrnErste Lichtstreumessungen in Blutserum zeigen im Falle der kationischen Aminogruppen tragenden Polymerbürsten zwar Aggregation, was aber durch entsprechende Umsetzung nach Konjugation wahrscheinlich unterdrückt werden kann, zeigen doch die entsprechenden Precursorpolymerbürsten mit Azidgruppen in Serum keinerlei Aggregation.rnrnZellaufnahmestudien in dendritische Zellen zeigen nur im Falle einer Azid-funktionalisierten Poly(2-isopropyl-2-oxazolin)bürste eine unspezifische Aufnahme. Die hydrophileren Poly(2-oxazolin)bürsten weise keine unspezifische Aufnahme auf, was eine wichtige Anfoderung für die Verwendung als Polymercarrier in der Krebsimmuntherapie ist.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid oral dosage form disintegration in the human stomach is a highly complex process dependent on physicochemical properties of the stomach contents as well as on physical variables such as hydrodynamics and mechanical stress. Understanding the role of hydrodynamics and forces in disintegration of oral solid dosage forms can help to improve in vitro disintegration testing and the predictive power of the in vitro test. The aim of this work was to obtain a deep understanding of the influence of changing hydrodynamic conditions on solid oral dosage form performance. Therefore, the hydrodynamic conditions and forces present in the compendial PhEur/USP disintegration test device were characterized using a computational fluid dynamics (CFD) approach. Furthermore, a modified device was developed and the hydrodynamic conditions present were simulated using CFD. This modified device was applied in two case studies comprising immediate release (IR) tablets and gastroretentive drug delivery systems (GRDDS). Due to the description of movement provided in the PhEur, the movement velocity of the basket-rack assembly follows a sinusoidal profile. Therefore, hydrodynamic conditions are changing continually throughout the movement cycle. CFD simulations revealed that the dosage form is exposed to a wide range of fluid velocities and shear forces during the test. The hydrodynamic conditions in the compendial device are highly variable and cannot be controlled. A new, modified disintegration test device based on computerized numerical control (CNC) technique was developed. The modified device can be moved in all three dimensions and radial movement is also possible. Simple and complex moving profiles can be developed and the influence of the hydrodynamic conditions on oral solid dosage form performance can be evaluated. Furthermore, a modified basket was designed that allows two-sided fluid flow. CFD simulations of the hydrodynamics and forces in the modified device revealed significant differences in the fluid flow field and forces when compared to the compendial device. Due to the CNC technique moving velocity and direction are arbitrary and hydrodynamics become controllable. The modified disintegration test device was utilized to examine the influence of moving velocity on disintegration times of IR tablets. Insights into the influence of moving speed, medium viscosity and basket design on disintegration times were obtained. An exponential relationship between moving velocity of the modified basket and disintegration times was established in simulated gastric fluid. The same relationship was found between the disintegration times and the CFD predicted average shear stress on the tablet surface. Furthermore, a GRDDS was developed based on the approach of an in situ polyelectrolyte complex (PEC). Different complexes composed of different grades of chitosan and carrageenan and different ratios of those were investigated for their swelling behavior, mechanical stability, and in vitro drug release. With an optimized formulation the influence of changing hydrodynamic conditions on the swelling behavior and the drug release profile was demonstrated using the modified disintegration test device. Both, swelling behavior and drug release, were largely dependent on the hydrodynamic conditions. Concluding, it has been shown within this thesis that the application of the modified disintegration test device allows for detailed insights into the influence of hydrodynamic conditions on solid oral dosage form disintegration and dissolution. By the application of appropriate test conditions, the predictive power of in vitro disintegration testing can be improved using the modified disintegration test device. Furthermore, CFD has proven a powerful tool to examine the hydrodynamics and forces in the compendial as well as in the modified disintegration test device. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The progress of wet age-related macular degeneration can now be controlled by intravitreal drug injection. This approach requires repeated injections, which could be avoided by delivering the drug to the retina. Intraocular implants are a promising solution for drug delivery near the retina. Currently, their accurate placement is challenging, and they can only be removed after a vitrectomy. In this paper, we introduce an approach for minimally invasive retinal drug delivery using magnetic intraocular inserts. We briefly discuss the electromagnetic-control system for magnetic implants and then focus on evaluating their ability to move in the vitreous humor. The mobility of magnetic intraocular implants is estimated in vitro with synthesized vitreous humors, and ex vivo with experiments on cadaver porcine eyes. Preliminary results show that with such magnetic implants a vitrectomy can be avoided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodegradable polymer nanoparticles have the properties necessary to address many of the issues associated with current drug delivery techniques including targeted and controlled delivery. A novel drug delivery vehicle is proposed consisting of a poly(lactic acid) nanoparticle core, with a functionalized, mesoporous silica shell. In this study, the production of PLA nanoparticles is investigated using solvent displacement in both a batch and continuous manner, and the effects of various system parameters are examined. Using Pluronic F-127 as the stabilization agent throughout the study, PLA nanoparticles are produced through solvent displacement with diameters ranging from 200 to 250 nm using two different methods: dropwise addition and in an impinging jet mixer. The impinging jet mixer allows for easy scale-up of particle production. The concentration of surfactant and volume of quench solution is found to have minimal impact on particle diameter; however, the concentration of PLA is found to significantly impact the diameter mean and polydispersity. In addition, the stability of the PLA nanoparticles is observed to increase as residual THF is evaporated. Lastly, the isolated PLA nanoparticles are coated with a silica shell using the Stöber Process. It is found that functionalizing the silica with a phosphonic silane in the presence of excess Pluronic F-127 decreases coalescence of the particles during the coating process. Future work should be conducted to fine-tune the PLA nanoparticle synthesis process by understanding the effect of other system parameters and in synthesizing mesoporous silica shells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: To assess the microbiological outcome of local administration of minocycline hydrochloride microspheres 1 mg (Arestin) in cases with peri-implantitis and with a follow-up period of 12 months. MATERIAL AND METHODS: After debridement, and local administration of chlorhexidine gel, peri-implantitis cases were treated with local administration of minocycline microspheres (Arestin). The DNA-DNA checkerboard hybridization method was used to detect bacterial presence during the first 360 days of therapy. RESULTS: At Day 10, lower bacterial loads for 6/40 individual bacteria including Actinomyces gerensceriae (P<0.1), Actinomyces israelii (P<0.01), Actinomyces naeslundi type 1 (P<0.01) and type 2 (P<0.03), Actinomyces odontolyticus (P<0.01), Porphyromonas gingivalis (P<0.01) and Treponema socranskii (P<0.01) were found. At Day 360 only the levels of Actinobacillus actinomycetemcomitans were lower than at baseline (mean difference: 1x10(5); SE difference: 0.34x10(5), 95% CI: 0.2x10(5) to 1.2x10(5); P<0.03). Six implants were lost between Days 90 and 270. The microbiota was successfully controlled in 48%, and with definitive failures (implant loss and major increase in bacterial levels) in 32% of subjects. CONCLUSIONS: At study endpoint, the impact of Arestin on A. actinomycetemcomitans was greater than the impact on other pathogens. Up to Day 180 reductions in levels of Tannerella forsythia, P. gingivalis, and Treponema denticola were also found. Failures in treatment could not be associated with the presence of specific pathogens or by the total bacterial load at baseline. Statistical power analysis suggested that a case control study would require approximately 200 subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Pulmonary route has been traditionally used to treat diseases of the respiratory tract. However, important research within the last two decades have shown that in addition to treating local diseases, a wide range of systemic diseases can be treated by delivering drugs to the lungs. The recent FDA approval to market Exubera, an inhalable form of insulin developed by Pfizer, to treat Diabetes, may just be the stepping stone that the pharmaceutical industry needs to market other drugs to treat systemic diseases via the lungs. However, this technology still needs repeated drug doses to control glucose levels, as the inhaled drug is cleared rapidly. Technologies have been developed where inhaled particles are capable of controlled release of drug from the lungs. An important feature of these technologies is the large geometric size of the particles that makes it difficult for the lung macrophages to clear these particles, which results in longer residence times for the particles in the lungs. Owing to the porosity, these particles have lower densities making them deliverable to the deep lungs. However, no modulation of drug release can be achieved with these technologies when more drug release may be required. This additional requirement can only be assuaged by additional dosing of the drug formulation, which can have undesirable effects due to excess loading of excipients in the lungs. In an attempt to bring about modulation of release from long residence time particles, a novel concept was developed in our laboratory that has been termed as the Agglomerated Vesicle Technology (AVT). Liposomes with encapsulated drug were agglomerated using well known cross linking chemistries to form agglomerates in the micron sized range. The large particles exhibited aerodynamic sizes in the respirable size range with minimal damage to the particles upon nebulization. By breaking the cross links between the liposomes with a cleaving agent, it was anticipated that triggered release of drug from the AVT particles could be achieved. In vivo studies done in healthy rabbits showed that post-administration modulation of drug release is possible from the AVT particles after the introduction of the cleaving agent. This study has important implications for the future development of this technology, where the AVT particles can be made “sensitive” to the product of disease. It is envisaged that a single dose of AVT containing the appropriate drug when administered to the lungs would maintain drug levels at a controlled rate over an extended period of time. When the need for more drug arises, the product of the disease would trigger the AVT particles to release more drug as needed to control the condition, thus eliminating the need for repeated drug doses and improved compliance amongst patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cochlear implants are neuroprostheses that are inserted into the inner ear to directly electrically stimulate the auditory nerve, thus replacing lost cochlear receptors, the hair cells. The reduction of the gap between electrodes and nerve cells will contribute to technological solutions simultaneously increasing the frequency resolution, the sound quality and the amplification of the signal. Recent findings indicate that neurotrophins (NTs) such as brain derived neurotrophic factor (BDNF) stimulate the neurite outgrowth of auditory nerve cells by activating Trk receptors on the cellular surface (1–3). Furthermore, small-size TrkB receptor agonists such as di-hydroxyflavone (DHF) are now available, which activate the TrkB receptor with similar efficiency as BDNF, but are much more stable (4). Experimentally, such molecules are currently used to attract nerve cells towards, for example, the electrodes of cochlear implants. This paper analyses the scenarios of low dose aspects of controlled release of small-size Trk receptor agonists from the coated CI electrode array into the inner ear. The control must first ensure a sufficient dose for the onset of neurite growth. Secondly, a gradient in concentration needs to be maintained to allow directive growth of neurites through the perilymph-filled gap towards the electrodes of the implant. We used fluorescein as a test molecule for its molecular size similarity to DHF and investigated two different transport mechanisms of drug dispensing, which both have the potential to fulfil controlled low-throughput drug-deliverable requirements. The first is based on the release of aqueous fluorescein into water through well-defined 60-μm size holes arrays in a membrane by pure osmosis. The release was both simulated using the software COMSOL and observed experimentally. In the second approach, solid fluorescein crystals were encapsulated in a thin layer of parylene (PPX), hence creating random nanometer-sized pinholes. In this approach, the release occurred due to subsequent water diffusion through the pinholes, dissolution of the fluorescein and then release by out-diffusion. Surprisingly, the release rate of solid fluorescein through the nanoscopic scale holes was found to be in the same order of magnitude as for liquid fluorescein release through microscopic holes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper briefly reviews the recent progress in using layered double hydroxide (LDH) nanomaterials as cellular delivery agents. The advantages of LDHs as cellular delivery agents are summarized, and the processes of interaction/de-intercalation of anionic drugs (genes) into/from LDH nanoparticles are discussed. Then the cellular delivery of LDH-drug (gene) nanohybrids and subsequent intracellular processes are presumably proposed. At the end, some challenges and remarks for efficient delivery of drugs (genes) via LDH nanoparticles are provided to the best of our knowledge.