983 resultados para Constitutive models


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The solution of partial differential equation of seepage problems is difficult to find analytically, especially for situations that involve great complexity. To overcome this problem, software based on finite differences and finite elements are usually used. This work presents the use of a finite element software, the GEO5, to solve the seepage problem at a dam of very complex section, the dam Eng. Armando Ribeiro Gonçalves, which at the end of its construction suffered rupture of the upstream slope at the central dam and then went through a process of reconstruction and auscultation. The analyses were performed for the operating condition of the reservoir, with an established flow. A numerical model was developed based on the level readings of the reservoir water and their piezometric readings as a proposal for the evaluation and future behavior prediction of the dam on established flow conditions. The use of constitutive models with the aid of computer systems is reflected in a way to predict future risk situations so they can be prevented

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is no agreement between experimental researchers whether the point where a granular material responds with a large change of stresses, strains or excess pore water pressure given a prescribed small input of some of the same variables defines a straight line or a curve in the stress space. This line, known as the instability line, may also vary in shape and position if the onset of instability is measured from drained or undrained triaxial tests. Failure of granular materials, which might be preceded by the onset of instability, is a subject that the geotechnical engineers have to deal with in the daily practice, and generally speaking it is associated to different phenomena observed not only in laboratory tests but also in the field. Examples of this are the liquefaction of loose sands subjected to undrained loading conditions and the diffuse instability under drained loading conditions. This research presents results of DEM simulations of undrained triaxial tests with the aim of studying the influence of stress history and relative density on the onset of instability in granular materials. Micro-mechanical analysis including the evolution of coordination numbers and fabric tensors is performed aiming to gain further insight on the particle-scale interactions that underlie the occurrence of this instability. In addition to provide a greater understanding, the results presented here may be useful as input for macro-scale constitutive models that enable the prediction of the onset of instability in boundary value problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Any safety assessment of a permanent repository for radioactive waste has to include an analysis of the geomechanical stability of the repository and integrity of the geological barrier. Such an analysis is based on geological and engineering geological studies of the site, on laboratory and in-situ experiments, and on numerical calculations. Central part of the safety analysis is the geomechanical modelling of the host rock. The model should simulate as closely as possible the conditions at the site and the behaviour of the rock (e.g., geology, repository geometry, initial rock stress, and constitutive models). On the basis of the geomechanical model numerical calculations are carried out using the finite-element method and an appropriate discretization of the repository and the host rock. The assessment of the repository stability and the barrier integrity is based on calculated stress and deformation and on the behaviour of the host rock measured and observed in situ. An example of the geomechanical analysis of the stability and integrity of the Bartensieben mine, a former salt mine, is presented. This mine is actually used as a repository for low level radioactive waste. The example includes all necessary steps of geological, engineering geological, and geotechnical investigations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of the study is to identify the 3D behaviour of an adhesive in an assembly, and to take into account the effect of ageing in a marine environment. To that end, three different tests were employed. Gravimetric analyses were used to determine the water diffusion kinetics in the adhesive. Bulk tensile tests were performed to highlight the effects of humid ageing on the adhesive behaviour. Modified Arcan tests were performed for several ageing times to obtain the experimental database which was necessary to identify constitutive models. A Mahnken-Schlimmer type model was determined for the unaged state according to a procedure developed in a previous study. This identification used inverse techniques. It was based on the unaged modified Arcan results and on a coupling between an optimisation routine and finite-element analysis. Then, a global inverse identification procedure was developed. Its aim was to relate the unaged parameters to the moisture concentration and overcome the difficulties usually associated with ageing of bonded assemblies in a humid environment: a non-uniformity of the stress state and a gradient of mechanical properties in the adhesive. This procedure was similar to the one used in the first part but needed modified Arcan results for several ageing times. It also required an initial assumption for the evolution of the Mahnken-Schlimmer parameters with the moisture concentration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We predict macroscopic fracture related material parameters of fully exfoliated clay/epoxy nano- composites based on their fine scale features. Fracture is modeled by a phase field approach which is implemented as user subroutines UEL and UMAT in the commercial finite element software Abaqus. The phase field model replaces the sharp discontinuities with a scalar damage field representing the diffuse crack topology through controlling the amount of diffusion by a regularization parameter. Two different constitutive models for the matrix and the clay platelets are used; the nonlinear coupled system con- sisting of the equilibrium equation and a diffusion-type equation governing the phase field evolution are solved via a NewtoneRaphson approach. In order to predict the tensile strength and fracture toughness of the clay/epoxy composites we evaluated the J integral for different specimens with varying cracks. The effect of different geometry and material parameters, such as the clay weight ratio (wt.%) and the aspect ratio of clay platelets are studied.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper focuses on the finite element (FE) response sensitivity and reliability analyses considering smooth constitutive material models. A reinforced concrete frame is modeled for FE sensitivity analysis followed by direct differentiation method under both static and dynamic load cases. Later, the reliability analysis is performed to predict the seismic behavior of the frame. Displacement sensitivity discontinuities are observed along the pseudo-time axis using non-smooth concrete and reinforcing steel model under quasi-static loading. However, the smooth materials show continuity in response sensitivity at elastic to plastic transition points. The normalized sensitivity results are also used to measure the relative importance of the material parameters on the structural responses. In FE reliability analysis, the influence of smoothness behavior of reinforcing steel is carefully noticed. More efficient and reasonable reliability estimation can be achieved by using smooth material model compare with bilinear material constitutive model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider models for the rheology of dense, slowly deforming granular materials based of classical and Cosserat plasticity, and their viscoplastic extensions that account for small but finite particle inertia. We determine the scale for the viscosity by expanding the stress in a dimensionless parameter that is a measure of the particle inertia. We write the constitutive relations for classical and Cosserat plasticity in stress-explicit form. The viscoplastic extensions are made by adding a rate-dependent viscous stress to the plasticity stress. We apply the models to plane Couette flow, and show that the classical plasticity and viscoplasticity models have features that depart from experimental observations; the prediction of the Cosserat viscoplasticity model is qualitatively similar to that of Cosserat plasticity, but the viscosities modulate the thickness of the shear layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we attempted to construct a constitutive model to deal with the phenomenon of cavitation and cavity growth in a rubber-like material subjected to an arbitrary tri-axial loading. To this end, we considered a spherical elementary representative volume in a general Rivlin's incompressible material containing a central spherical cavity. The kinematics proposed by [Hou, H.S., Abeyaratne, R., 1992. Cavitation in elastic and elastic-plastic solids. J. Mech. Phys. Solids 40, 571-722] was adopted in order to construct an approximate but optimal field. In order to establish a suitable constitutive law for this class of materials, we utilized the homogenisation technique that permits us to calculate the average strain energy density of the volume. The cavity growth was considered through a physically realistic failure criterion. Combination of the constitutive law and the failure criterion enables us to describe correctly the global behaviour and the damage evolution of the material under tri-axial loading. It was shown that the present models can efficiently reproduce different stress states, varying from uniaxial to tri-axial tensions, observed in experimentations. Comparison between predicted results and experimental data proves that the proposed model is accurate and physically reasonable. Another advantage is that the proposed model does not need special identification work, the initial Rivlin's law for the corresponding incompressible material is sufficient to form the new law for the compressible material resulted from cavitation procedure. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Es desenvolupa una eina de disseny per l'anàlisi de la tolerància al dany en composites. L'eina pot predir el inici i la propagació de fisures interlaminars. També pot ser utilitzada per avaluar i planificar la necessitat de reparar o reemplaçar components durant la seva vida útil. El model desenvolupat pot ser utilitzat tan per simular càrregues estàtiques com de fatiga. El model proposat és un model de dany termodinàmicament consistent que permet simular la delaminació en composites sota càrregues variables. El model es formula dins el context de la Mecànica del Dany, fent ús dels models de zona cohesiva. Es presenta un metodologia per determinar els paràmetres del model constitutiu que permet utilitzar malles d'elements finits més bastes de les que es poden usar típicament. Finalment, el model és també capaç de simular la delaminació produïda per càrregues de fatiga.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the numerical simulation of three-dimensional time-dependent viscoelastic free surface flows using the Upper-Convected Maxwell (UCM) constitutive equation and an algebraic explicit model. This investigation was carried out to develop a simplified approach that can be applied to the extrudate swell problem. The relevant physics of this flow phenomenon is discussed in the paper and an algebraic model to predict the extrudate swell problem is presented. It is based on an explicit algebraic representation of the non-Newtonian extra-stress through a kinematic tensor formed with the scaled dyadic product of the velocity field. The elasticity of the fluid is governed by a single transport equation for a scalar quantity which has dimension of strain rate. Mass and momentum conservations, and the constitutive equation (UCM and algebraic model) were solved by a three-dimensional time-dependent finite difference method. The free surface of the fluid was modeled using a marker-and-cell approach. The algebraic model was validated by comparing the numerical predictions with analytic solutions for pipe flow. In comparison with the classical UCM model, one advantage of this approach is that computational workload is substantially reduced: the UCM model employs six differential equations while the algebraic model uses only one. The results showed stable flows with very large extrudate growths beyond those usually obtained with standard differential viscoelastic models. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is related with the proposition of a so-called regular or convex solver potential to be used in numerical simulations involving a certain class of constitutive elastic-damage models. All the mathematical aspects involved are based on convex analysis, which is employed aiming a consistent variational formulation of the potential and its conjugate one. It is shown that the constitutive relations for the class of damage models here considered can be derived from the solver potentials by means of sub-differentials sets. The optimality conditions of the resulting minimisation problem represent in particular a linear complementarity problem. Finally, a simple example is present in order to illustrate the possible integration errors that can be generated when finite step analysis is performed. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to develop a model capable to capture the different contributions which characterize the nonlinear behaviour of reinforced concrete structures. In particular, especially for non slender structures, the contribution to the nonlinear deformation due to bending may be not sufficient to determine the structural response. Two different models characterized by a fibre beam-column element are here proposed. These models can reproduce the flexure-shear interaction in the nonlinear range, with the purpose to improve the analysis in shear-critical structures. The first element discussed is based on flexibility formulation which is associated with the Modified Compression Field Theory as material constitutive law. The other model described in this thesis is based on a three-field variational formulation which is associated with a 3D generalized plastic-damage model as constitutive relationship. The first model proposed in this thesis was developed trying to combine a fibre beamcolumn element based on the flexibility formulation with the MCFT theory as constitutive relationship. The flexibility formulation, in fact, seems to be particularly effective for analysis in the nonlinear field. Just the coupling between the fibre element to model the structure and the shear panel to model the individual fibres allows to describe the nonlinear response associated to flexure and shear, and especially their interaction in the nonlinear field. The model was implemented in an original matlab® computer code, for describing the response of generic structures. The simulations carried out allowed to verify the field of working of the model. Comparisons with available experimental results related to reinforced concrete shears wall were performed in order to validate the model. These results are characterized by the peculiarity of distinguishing the different contributions due to flexure and shear separately. The presented simulations were carried out, in particular, for monotonic loading. The model was tested also through numerical comparisons with other computer programs. Finally it was applied for performing a numerical study on the influence of the nonlinear shear response for non slender reinforced concrete (RC) members. Another approach to the problem has been studied during a period of research at the University of California Berkeley. The beam formulation follows the assumptions of the Timoshenko shear beam theory for the displacement field, and uses a three-field variational formulation in the derivation of the element response. A generalized plasticity model is implemented for structural steel and a 3D plastic-damage model is used for the simulation of concrete. The transverse normal stress is used to satisfy the transverse equilibrium equations of at each control section, this criterion is also used for the condensation of degrees of freedom from the 3D constitutive material to a beam element. In this thesis is presented the beam formulation and the constitutive relationships, different analysis and comparisons are still carrying out between the two model presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Notch1 signaling pathway is essential for hematopoietic development. However, the effects of postnatal activation of Notch1 signaling on hematopoietic system is not yet fully understood. We previously generated ZEG‑IC‑Notch1 transgenic mice that have a floxed β‑geo/stop signal between a CMV promoter and intracellular domain of Notch1 (IC‑Notch1). Constitutively active IC‑Notch1 is silent until the introduction of Cre recombinase. In this study, endothelial/hematopoietic specific expression of IC‑Notch1 in double transgenic ZEG‑IC‑Notch1/Tie2‑Cre embryos induced embryonic lethality at E9.5 with defects in vascular system but not in hematopoietic system. Inducible IC‑Notch1 expression in adult mice was achieved by using tetracycline regulated Cre system. The ZEG‑IC‑Notch1/Tie2‑tTA/tet‑O‑Cre triple transgenic mice survived embryonic development when maintained on tetracycline. Post‑natal withdrawal of tetracycline induced expression of IC‑Notch1 transgene in hematopoietic cells of adult mice. The triple transgenic mice displayed extensive T‑cell infiltration in multiple organs and T‑cell malignancy of lymph nodes. In addition, the protein levels of p53 and alternative reading frame (ARF) were decreased in lymphoma‑like neoplasms from the triple transgenic mice while their mRNA expression remained unchanged, suggesting that IC‑Notch1 might repress ARF‑p53 pathway by a post‑transcriptional mechanism. This study demonstrated that activation of constitutive Notch1 signaling after embryonic development alters adult hematopoiesis and induces T‑cell malignancy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The MET receptor tyrosine kinase is often deregulated in human cancers and several MET inhibitors are evaluated in clinical trials. Similarly to EGFR, MET signals through the RAS-RAF-ERK/MAPK pathway which plays key roles in cell proliferation and survival. Mutations of genes encoding for RAS proteins, particularly in KRAS, are commonly found in various tumors and are associated with constitutive activation of the MAPK pathway. It was shown for EGFR, that KRAS mutations render upstream EGFR inhibition ineffective in EGFR-positive colorectal cancers. Currently, there are no clinical studies evaluating MET inhibition impairment due to RAS mutations. To test the impact of RAS mutations on MET targeting, we generated tumor cells responsive to the MET inhibitor EMD1214063 that express KRAS G12V, G12D, G13D and HRAS G12V variants. We demonstrate that these MAPK-activating RAS mutations differentially interfere with MET-mediated biological effects of MET inhibition. We report increased residual ERK1/2 phosphorylation indicating that the downstream pathway remains active in presence of MET inhibition. Consequently, RAS variants counteracted MET inhibition-induced morphological changes as well as anti-proliferative and anchorage-independent growth effects. The effect of RAS mutants was reversed when MET inhibition was combined with MEK inhibitors AZD6244 and UO126. In an in vivo mouse xenograft model, MET-driven tumors harboring mutated RAS displayed resistance to MET inhibition. Taken together, our results demonstrate for the first time in details the role of KRAS and HRAS mutations in resistance to MET inhibition and suggest targeting both MET and MEK as an effective strategy when both oncogenic drivers are expressed.