989 resultados para Compact metric space
Resumo:
Neste trabalho será apresentado um método recente de compressão de imagens baseado na teoria dos Sistemas de Funções Iteradas (SFI), designado por Compressão Fractal. Descrever-se-á um modelo contínuo para a compressão fractal sobre o espaço métrico completo Lp, onde será definido um operador de transformação fractal contractivo associado a um SFI local com aplicações. Antes disso, será introduzida a teoria dos SFIs no espaço de Hausdorff ou espaço fractal, a teoria dos SFIs Locais - uma generalização dos SFIs - e dos SFIs no espaço Lp. Fornecida a fundamentação teórica para o método será apresentado detalhadamente o algoritmo de compressão fractal. Serão também descritas algumas estratégias de particionamento necessárias para encontrar o SFI com aplicações, assim como, algumas estratégias para tentar colmatar o maior entrave da compressão fractal: a complexidade de codificação. Esta dissertação assumirá essencialmente um carácter mais teórico e descritivo do método de compressão fractal, e de algumas técnicas, já implementadas, para melhorar a sua eficácia.
Resumo:
For each quasi-metric space X we consider the convex lattice SLip(1)(X) of all semi-Lipschitz functions on X with semi-Lipschitz constant not greater than 1. If X and Y are two complete quasi-metric spaces, we prove that every convex lattice isomorphism T from SLip(1)(Y) onto SLip(1)(X) can be written in the form Tf = c . (f o tau) + phi, where tau is an isometry, c > 0 and phi is an element of SLip(1)(X). As a consequence, we obtain that two complete quasi-metric spaces are almost isometric if, and only if, there exists an almost-unital convex lattice isomorphism between SLip(1)(X) and SLip(1) (Y).
Resumo:
Today’s data are increasingly complex and classical statistical techniques need growingly more refined mathematical tools to be able to model and investigate them. Paradigmatic situations are represented by data which need to be considered up to some kind of trans- formation and all those circumstances in which the analyst finds himself in the need of defining a general concept of shape. Topological Data Analysis (TDA) is a field which is fundamentally contributing to such challenges by extracting topological information from data with a plethora of interpretable and computationally accessible pipelines. We con- tribute to this field by developing a series of novel tools, techniques and applications to work with a particular topological summary called merge tree. To analyze sets of merge trees we introduce a novel metric structure along with an algorithm to compute it, define a framework to compare different functions defined on merge trees and investigate the metric space obtained with the aforementioned metric. Different geometric and topolog- ical properties of the space of merge trees are established, with the aim of obtaining a deeper understanding of such trees. To showcase the effectiveness of the proposed metric, we develop an application in the field of Functional Data Analysis, working with functions up to homeomorphic reparametrization, and in the field of radiomics, where each patient is represented via a clustering dendrogram.
Resumo:
Chess endgame tables should provide efficiently the value and depth of any required position during play. The indexing of an endgame’s positions is crucial to meeting this objective. This paper updates Heinz’ previous review of approaches to indexing and describes the latest approach by the first and third authors. Heinz’ and Nalimov’s endgame tables (EGTs) encompass the en passant rule and have the most compact index schemes to date. Nalimov’s EGTs, to the Distance-to-Mate (DTM) metric, require only 30.6 × 10^9 elements in total for all the 3-to-5-man endgames and are individually more compact than previous tables. His new index scheme has proved itself while generating the tables and in the 1999 World Computer Chess Championship where many of the top programs used the new suite of EGTs.
Resumo:
Chess endgame tables should provide efficiently the value and depth of any required position during play. The indexing of an endgame’s positions is crucial to meeting this objective. This paper updates Heinz’ previous review of approaches to indexing and describes the latest approach by the first and third authors. Heinz’ and Nalimov’s endgame tables (EGTs) encompass the en passant rule and have the most compact index schemes to date. Nalimov’s EGTs, to the Distance-to-Mate (DTM) metric, require only 30.6 × 109 elements in total for all the 3-to-5-man endgames and are individually more compact than previous tables. His new index scheme has proved itself while generating the tables and in the 1999 World Computer Chess Championship where many of the top programs used the new suite of EGTs.
Resumo:
In this paper, we show that the Wijsman hyperspace of a metric hereditarily Baire space is Baire. This solves a recent question posed by Zsilinszky. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Let E be an infinite dimensional separable space and for e ∈ E and X a nonempty compact convex subset of E, let qX(e) be the metric antiprojection of e on X. Let n ≥ 2 be an arbitrary integer. It is shown that for a typical (in the sence of the Baire category) compact convex set X ⊂ E the metric antiprojection qX(e) has cardinality at least n for every e in a dense subset of E.
Resumo:
AMS Subj. Classification: MSC2010: 42C10, 43A50, 43A75
Multipliers on Spaces of Functions on a Locally Compact Abelian Group with Values in a Hilbert Space
Resumo:
2000 Mathematics Subject Classification: Primary 43A22, 43A25.
Resumo:
This work revolves around potential theory in metric spaces, focusing on applications of dyadic potential theory to general problems associated to functional analysis and harmonic analysis. In the first part of this work we consider the weighted dual dyadic Hardy's inequality over dyadic trees and we use the Bellman function method to characterize the weights for which the inequality holds, and find the optimal constant for which our statement holds. We also show that our Bellman function is the solution to a stochastic optimal control problem. In the second part of this work we consider the problem of quasi-additivity formulas for the Riesz capacity in metric spaces and we prove formulas of quasi-additivity in the setting of the tree boundaries and in the setting of Ahlfors-regular spaces. We also consider a proper Harmonic extension to one additional variable of Riesz potentials of functions on a compact Ahlfors-regular space and we use our quasi-additivity formula to prove a result of tangential convergence of the harmonic extension of the Riesz potential up to an exceptional set of null measure
Resumo:
We obtained new Fabry-Perot data cubes and derived velocity fields, monochromatic, and velocity dispersion maps for 28 galaxies in the Hickson compact groups 37, 40, 47, 49, 54, 56, 68, 79, and 93. We also derived rotation curves for 9 of the studied galaxies, 6 of which are strongly asymmetric. Combining these new data with previously published 2D kinematic maps of compact group galaxies, we investigated the differences between the kinematic and morphological position angles for a sample of 46 galaxies. We find that one third of the unbarred compact group galaxies have position angle misalignments between the stellar and gaseous components. This and the asymmetric rotation curves are clear signatures of kinematic perturbations, probably because of interactions among compact group galaxies. A comparison between the B-band Tully-Fisher relation for compact group galaxies and for the GHASP field-galaxy sample shows that, despite the high fraction of compact group galaxies with asymmetric rotation curves, these lay on the TF relation defined by galaxies in less dense environments, although with more scatter. This agrees with previous results, but now confirmed for a larger sample of 41 galaxies. We confirm the tendency for compact group galaxies at the low-mass end of the Tully-Fisher relation (HCG 49b, 89d, 96c, 96d, and 100c) to have either a magnitude that is too bright for its mass (suggesting brightening by star formation) and/or a low maximum rotational velocity for its luminosity (suggesting tidal stripping). These galaxies are outside the Tully Fisher relation at the 1 sigma level, even when the minimum acceptable values of inclinations are used to compute their maximum velocities. Including such galaxies with nu < 100 km s(-1) in the determination of the zero point and slope of the compact group B-band Tully-Fisher relation would strongly change the fit, making it different from the relation for field galaxies, which has to be kept in mind when studying scaling relations of interacting galaxies, especially at high redshifts.
Resumo:
The exact composition of a specific class of compact stars, historically referred to as ""neutron stars,'' is still quite unknown. Possibilities ranging from hadronic to quark degrees of freedom, including self-bound versions of the latter, have been proposed. We specifically address the suitability of strange star models (including pairing interactions) in this work, in the light of new measurements available for four compact stars. The analysis shows that these data might be explained by such an exotic equation of state, actually selecting a small window in parameter space, but still new precise measurements and also further theoretical developments are needed to settle the subject.