A functional representation of almost isometries
Data(s) |
15/01/2017
|
---|---|
Resumo |
For each quasi-metric space X we consider the convex lattice SLip(1)(X) of all semi-Lipschitz functions on X with semi-Lipschitz constant not greater than 1. If X and Y are two complete quasi-metric spaces, we prove that every convex lattice isomorphism T from SLip(1)(Y) onto SLip(1)(X) can be written in the form Tf = c . (f o tau) + phi, where tau is an isometry, c > 0 and phi is an element of SLip(1)(X). As a consequence, we obtain that two complete quasi-metric spaces are almost isometric if, and only if, there exists an almost-unital convex lattice isomorphism between SLip(1)(X) and SLip(1) (Y). |
Formato |
application/pdf |
Identificador | |
Idioma(s) |
en |
Publicador |
Elsevier |
Relação |
http://eprints.ucm.es/40082/ http://www.sciencedirect.com/science/article/pii/S0022247X16300646 http://dx.doi.org/10.1016/j.jmaa.2016.04.026 MTM2012-34341 MTM2013-45643-C02-01-P |
Direitos |
info:eu-repo/semantics/restrictedAccess |
Palavras-Chave | #Análisis funcional y teoría de operadores |
Tipo |
info:eu-repo/semantics/article PeerReviewed |