A functional representation of almost isometries


Autoria(s): Cabello, Javier; Jaramillo Aguado, Jesús Ángel
Data(s)

15/01/2017

Resumo

For each quasi-metric space X we consider the convex lattice SLip(1)(X) of all semi-Lipschitz functions on X with semi-Lipschitz constant not greater than 1. If X and Y are two complete quasi-metric spaces, we prove that every convex lattice isomorphism T from SLip(1)(Y) onto SLip(1)(X) can be written in the form Tf = c . (f o tau) + phi, where tau is an isometry, c > 0 and phi is an element of SLip(1)(X). As a consequence, we obtain that two complete quasi-metric spaces are almost isometric if, and only if, there exists an almost-unital convex lattice isomorphism between SLip(1)(X) and SLip(1) (Y).

Formato

application/pdf

Identificador

http://eprints.ucm.es/40082/1/Jaramillo110.pdf

Idioma(s)

en

Publicador

Elsevier

Relação

http://eprints.ucm.es/40082/

http://www.sciencedirect.com/science/article/pii/S0022247X16300646

http://dx.doi.org/10.1016/j.jmaa.2016.04.026

MTM2012-34341

MTM2013-45643-C02-01-P

Direitos

info:eu-repo/semantics/restrictedAccess

Palavras-Chave #Análisis funcional y teoría de operadores
Tipo

info:eu-repo/semantics/article

PeerReviewed