976 resultados para Co^2
Resumo:
The use of fac-[Mo(CO)(3)(MeCN)(eta(2)-L(1))] (1a) {L(1) = Ph(2)PN(Pr-i)PPh(DMP)}(2) as a precursor to metalloligands and bimetallic, heterotrimetallic, and heptacoordinated complexes is reported. The reaction of 1a with diphosphazane, dppa, or a diphosphinoalkane such as dppm or dppe yields the fac-eta(1)-diphosphine substituted metalloligands, fac-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-PXP)] {PXP = dppa (2), dppm (3), and dppe (4)}. These undergo isomerization to yield the corresponding mer-diphosphine complexes (5-7). Oxidation of the uncoordinated phosphorus atom of the mer-eta(1)-dppm-substituted complex eventually provides mer-[Mo(CO)(3)-(eta(2)-L(1)){eta(1)-Ph(2)PCH(2)P(O)Ph(2)}](8). The structure of the latter complex has been confirmed by single crystal X-ray diffraction {triclinic system, P ($) over bar 1; a = 11.994(3), b = 14.807(2), c = 15.855(3) Angstrom; alpha = 114.24(1), beta = 91.35(2), and gamma = 98.95(1)degrees; Z = 2, 4014 data (F-0 > 5 sigma(F-0)), R = 0.066, R(W) = 0.069}. Treatment of the dppe metalloligand 7 with [PtCl2(COD)] yields the heterotrimetallic complex cis-[PtCl2{mer-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-dppe]}(2)] (9). Attempts to prepare a related trimetallic complex with the dppm-containing metalloligand were unsuccessful; only the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) and cis-[PtCl2(eta(2)-dppm)] were obtained. Reaction of la with dppe in the ratio 2:1 yields the mer-mer dinuclear complex [{mer-[Mo(CO)(3)(eta(2)-L(1))]}(2)(mu-dppe)] (10) bridged by dppe. Oxidation of 1a with iodine yields the Mo(II) heptacoordinated complex [MoI2(CO)(2)(eta(3)-L(1))] (11) with tridentate PPN coordination. The same Mo(II) complex 11 is also obtained by the direct oxidation of the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) with iodine. The structure of 11 has been confirmed by X-ray diffraction studies {monoclinic system, Cc; a = 10.471(2), b = 19.305(3), c = 17.325(3) Angstrom; beta = 95.47(2)degrees; Z = 4, 3153 data (F-0 > 5 sigma(F-0)), R = 0.049, R(W) = 0.051}. This complex exhibits an unusual capped-trigonal prismatic geometry around the metal. A similar heptacoordinated complex 12 with a chiral diphosphazane ligand {L(3) = (S,R)-P(h)2PN-(*CHMePh)*PPh(DMP)} has also been synthesized.
Resumo:
Halfsandwich iron dicarbonyl complex [eta(5)-C5H3(t-Bu)(2)]Fe(CO)(2)Cl(1) reacts with 1, 2-dilithium diseleno carborane Li(2)Se(2)C(2)B(10)H10 (2) to give a binuclear iron carborane complex [eta(5)-C5H3(t-Bu)(2)](2)Fe-2(CO)(3) Se2C2B10H10(3). The X-ray diffraction analysis of complex 3 reveals that one of the iron atoms is chiral.
Resumo:
Three prototypes of dinuclear complexes were obtained from the reactions of dilithium 1,2-dicarbacloso-dodecaborane-1,2-dichalcogenolates, (B10H10)C-2-(ELi)(2) (E = S, Se), with CpFe(CO)(2)Cl (1), CpRu(PPh3)(2)Cl (2), or [Cp*RuCl2](2) (3), respectively, and their structures have been determined by X-ray crystallography.
Resumo:
Through the reaction of Co-2(CO)(8) with four thiuram [R2NC(S)S](2), four new sulfur-capped trinuclear cobalt carbonyl clusters Co-3 (CO)(7) (mu(3)-S) (mu, eta(2)-S* C* NR2) ( I : R = Me; I : R = Et; II : R = i-Pr; IV : NR= -N [GRAPHICS] were prepared and characterized by elementary analysis, IR,H-1 NMR and MS spectroscopy. The crystal structure of the cluster Co-3(CO)(7)(mu(3)-S)[mu, eta(2)-S*C*N (i-Pr)(2)]( III) was determined by X-ray single crystal diffraction method. The crystal of m is monoclinic, belonging to space group P2(1)/n, and the cell parameters are as follows: a = 1, 145 2(2) nm, b = 1. 502 8(3) nm, c = 1, 214 4(2) nmj alpha = 90 degrees, beta = 92, 15(3)degrees, gamma = 90 degrees; V = 2. 088 5(7) nm(3) , Z = 4, F (000) = 1 096, D-c = 1. 747 mg . m(-3), mu = 2. 588 mm(-1), R=0. 040 7, R-w=0. 062 4, The structural analysis shows that cluster II has a pyrimidal Co3S framework and contains a heterocylic bridging bidentate ligand [mu, eta(2)-S* C* N (i-Pr)(2)] linked to the Co2 and Co3 atoms of the cluster by a cobalt-carbon and a cobalt-sulfur bond respectively.
Resumo:
Carbonyl-iridium half-sandwich compounds, Cp*Ir(CO)(EPh)(2) (E = S, Se), were prepared by the photo-induced reaction of Cp*Ir(CO)(2) with the diphenyl dichalcogenides, E2Ph2, and used as neutral chelating ligands in carbonylmetal complexes such as Cp*Ir(CO)(mu-EPh)(2)[Cr(CO)(4)], Cp*Ir(CO)(mu-EPh)(2)[Mo(CO)(4)] and Cp*Ir(CO)(mu-EPh)(2)[Fe(CO)(3)], respectively. A trimethylphosphane - iridium analogue, Cp*Ir(PMe3)(mu-SeMe)(2)[Cr(CO)(4)], was also obtained. The new heterodimetallic complexes were characterized by IR and NMR spectroscopy, and the molecular geometry of Cp*Ir(CO)(mu-SePh)(2)[Mo(CO)(4)] has been determined by a single crystal X-ray structure analysis. According to the long Ir...Mo distance (395.3(1) Angstrom), direct metal-metal interactions appear to be absent. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
2,2-Co()/Co()2,2-,/,,
Resumo:
Calculated answer: First-principles calculations have been applied to calculate the energy barrier for the key step in CO formation on a Pt surface (see picture; Pt blue, Pt atoms on step edge yellow) to understand the low CO2 selectivity in the direct ethanol fuel cell. The presence of surface oxidant species such as O (brown bar) and OH (red bar) led to an increase of the energy barrier and thus an inhibition of the key step. 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
<p>The most active binary PtSn catalyst for direct ethanol fuel cell applications has been studied at 20 <sup>o</sup>C and 60 <sup>o</sup>C, using variable temperature electrochemical in-situ FTIR. In comparison with Pt, binary PtSn inhibits ethanol dissociation to CO(a), but promotes partial oxidation to acetaldehyde and acetic acid. Increasing the temperature from 20 <sup>o</sup>C to 60 <sup>o</sup>C facilitates both ethanol dissociation to CO(a) and their further oxidation to CO<sub>2</sub>, leading to an increased selectivity towards CO<sub>2</sub>; however, acetaldehyde and acetic acid are still the main products. Potential-dependent phase diagrams for surface oxidants of OH(a) formation on Pt(111), Pt(211) and Sn modified Pt(111) and Pt(211) surfaces have been determined using density functional theory (DFT) calculations. It is shown that Sn promotes the formation of OH(a) with a lower onset potential on the Pt(111) surface, whereas an increase in the onset potential is found on modification of the (211) surface. In addition, Sn inhibits the Pt(211) step edge with respect to ethanol C-C bond breaking compared with that found on the pure Pt, which reduces the formation of CO(a). Sn was also found to facilitate ethanol dehydrogenation and partial oxidation to acetaldehyde and acetic acid which, combined with the more facile OH(a) formation on the Pt(111) surface, gives us a clear understanding of the experimentally determined results. This combined electrochemical in-situ FTIR and DFT study, provides, for the first time, an insight into the long-term puzzling features of the high activity but low CO<sub>2</sub> production found on binary PtSn ethanol fuel cell catalysts.</p>
Resumo:
A new synthetic route towards the mixed-metal cluster [OS2Ru(CO)(12)] is described together with the syntheses of its PPh3 and iPr-AcPy (iPr-AcPy = 2-acetylpyridine-N-isopropylimine) derivatives. The molecular structures of the novel clusters [Os2Ru(CO)(11)(PPh3)] and [Os2Ru(CO)(10)(iPr-AcPy)] were determined on the basis of crystalline solid solutions of the Os2Ru and corresponding Os-3 species. The structures reveal that coordination of the Lewis bases occurs exclusively at the ruthenium site of [Os2Ru(CO)(12)], which is in agreement with density functional theory (DFT) calculations on several structural isomers of these compounds. According to the time-dependent DFT results, the lowest optically accessible excited state of [Os2Ru(CO)(10)(iPr-AcPy)] has a prevailing sigma(Ru-Os-2)pi*(iPr-AcPy) character, with a partial sigma sigma*(Ru-Os-2) contribution. In weakly coordinating 2-chlorobutane, the excited state has a lifetime tau = 10.4 +/- 1.2 ps and produces biradicals considerably faster than observed for [Os-3(CO)10(iPr-AcPy) (tau = 25.3 +/- 0.7ps)]. In coordinating acetonitrile, the excited state of [Os2Ru(CO)(10)(iPr-AcPy)] decays mono-exponentially with a lifetime tau = 2.1 +/- 0.2 ps. In contrast to [Os-3(CO)(10)(iPr-AcPy)] that forms biradicals as the main primary photoproduct even in strongly coordinating solvents, zwitterion formation from the solvated lowest excited state is observed for the heterometallic cluster. This is concluded from time-resolved absorption studies in the microsecond time domain. Due to the lower tendency of the coordinatively unsaturated Ru+(CO)(2)(iPr-AcPy-/0) moiety to bind a Lewis base, the heteronuclear biradical and zwitterionic photoproducts live significantly shorter than their triosmium counterparts. The influence of the weaker Os-2-Ru(iPr-AcPy) bond on the redox reactivity is clearly reflected in very reactive radical anions formed upon electrochemical reduction of [Os2Ru(CO)(10)(iPr-AcPy)]. The dimer [-OS(CO)(4)-Os(CO)(4)-Ru(CO)(2)(iPr-AcPy)](2)(2-) is the only IR-detectable intermediate reduction product. The dinuclear complex [Os-2(CO)(8)](2-) and insoluble [Ru(CO)(2)(iPr-AcPy)](n), are the ultimate reduction products, proving fragmentation of the OS2Ru core.
Resumo:
IR, UV-vis, and EPR spectroelectrochemistry at variable temperatures and in different solvents were applied to investigate in situ the formation of electroactive molecular chains with a nonbridged Os-Os backbone, in particular, the polymer [Os-0(bpy)(CO)(2)](n), (bpy = 2,2'-bipyridine), from a mononuclear Os(II) carbonyl precursor, [Os-II(bpy)(CO)(2)Cl-2]. The one-electron-reduced form, [Os-II(bpy(.-))(CO)(2)Cl-2](-), has been characterized spectroscopically at low temperatures. This radical anion is the key intermediate in the electrochemical propagation process responsible for the metal-metal bond formation. Unambiguous spectroscopic evidence has been gained also for the formation of [{Os-0(bpy(.-))(CO)(2)}(-)](n), the electron-rich electrocatalyst of CO2 reduction. The polymer species are fairly well soluble in butyronitrile, which is important for their potential utilization in nanoscience, for example, as conducting molecular wires. We have also shown that complete solubility is accomplished for the monocarbonyl-acetonitrile derivative of the polymer, [Os-0(bpy)(CO)(MeCN)(2)Cl](n).
Resumo:
Cobalt catalysts were prepared on supports of SiO(2) and gamma-Al(2)O(3) by the impregnation method, using a solution of Co precursor in methanol. The samples were characterized by XRD, TPR, and Raman spectroscopy and tested in ethanol steam reforming. According to the XRD results, impregnation with the methanolic solution led to smaller metal crystallites than with aqueous solution, on the SiO(2) support. On gamma-Al(2)O(3), all the samples exhibited small crystallites, with either solvent, due to a higher Co-support interaction that inhibits the reduction of Co species. The TPR results were consistent with XRD results and the samples supported on gamma-Al(2)O(3) showed a lower degree of reduction. In the steam reforming of ethanol, catalysts supported on SiO(2) and prepared with the methanolic solution showed the best H(2), CO(2) and CO selectivity. Those supported on gamma-Al(2)O(3) showed lower H(2) selectivity. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Modelling of massive stars and supernovae (SNe) plays a crucial role in understanding galaxies. From this modelling we can derive fundamental constraints on stellar evolution, mass-loss processes, mixing, and the products of nucleosynthesis. Proper account must be taken of all important processes that populate and depopulate the levels (collisional excitation, de-excitation, ionization, recombination, photoionization, boundbound processes). For the analysis of Type Ia SNe and core collapse SNe (Types Ib, Ic and II) Fe group elements are particularly important. Unfortunately little data is currently available and most noticeably absent are the photoionization cross-sections for the Fe-peaks which have high abundances in SNe. Important interactions for both photoionization and electron-impact excitation are calculated using the relativistic Dirac atomic<em style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 14px; font-family: "Lucida Grande", "Lucida Sans Unicode", Tahoma, Verdana, Arial, Helvetica, sans-serif; line-height: inherit; vertical-align: baseline; background-color: rgb(255, 255, 255);">R</em>-matrix codes (DARC) for low-ionization stages of Cobalt. All results are calculated up to photon energies of 45eV and electron energies up to 20eV. The wavefunction representation of CoIIIhas been generated usingGRASP0by including the dominant 3d<sup style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 0.85em; font-family: "Lucida Grande", "Lucida Sans Unicode", Tahoma, Verdana, Arial, Helvetica, sans-serif; line-height: 0; background-color: rgb(255, 255, 255);">7</sup>, 3d<sup style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 0.85em; font-family: "Lucida Grande", "Lucida Sans Unicode", Tahoma, Verdana, Arial, Helvetica, sans-serif; line-height: 0; background-color: rgb(255, 255, 255);">6</sup>[4s, 4p], 3p<sup style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 0.85em; font-family: "Lucida Grande", "Lucida Sans Unicode", Tahoma, Verdana, Arial, Helvetica, sans-serif; line-height: 0; background-color: rgb(255, 255, 255);">4</sup>3d<sup style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 0.85em; font-family: "Lucida Grande", "Lucida Sans Unicode", Tahoma, Verdana, Arial, Helvetica, sans-serif; line-height: 0; background-color: rgb(255, 255, 255);">9</sup>and 3p<sup style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 0.85em; font-family: "Lucida Grande", "Lucida Sans Unicode", Tahoma, Verdana, Arial, Helvetica, sans-serif; line-height: 0; background-color: rgb(255, 255, 255);">6</sup>3d<sup style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 0.85em; font-family: "Lucida Grande", "Lucida Sans Unicode", Tahoma, Verdana, Arial, Helvetica, sans-serif; line-height: 0; background-color: rgb(255, 255, 255);">9</sup>configurations, resulting in 292 fine structure levels. Electron-impact collision strengths and Maxwellian averaged effective collision strengths across a wide range of astrophysically relevant temperatures are computed for CoIII. In addition, statistically weighted level-resolved ground and metastable photoionization cross-sections are presented for CoIIand compared directly with existing work.
Resumo:
Paraffin sections from 190 epithelial ovarian tumours, including 159 malignant and 31 benign epithelial tumours, were analysed immunohistochemically for expression of cyclin-dependent kinase inhibitor 2 (CDKN2A) gene product p16INK4A (p16). Most benign tumours showed no p16 expression in the tumour cells, whereas only 11% of malignant cancers were p16 negative. A high proportion of p16-positive tumour cells was associated with advanced stage and grade, and with poor prognosis in cancer patients. For FIGO stage 1 tumours, a high proportion of p16-positive tumour cells was associated with poorer survival, suggesting that accumulation of p16 is an early event of ovarian tumorigenesis. In contrast to tumour cells, high expression of p16 in the surrounding stromal cells was not associated with the stage and grade, but was associated with longer survival. When all parameters were combined in multivariate analysis, high p16 expression in stromal cells was not an independent predictor for survival, indicating that low p16 expression in stromal cells is associated with other markers of tumour progression. High expression of p16 survival in the stromal cells of tumours from long-term survivors suggests that tumour growth is limited to some extent by factors associated with p16 expression in the matrix.
Resumo:
It has been reported that genes regulating apoptosis may play a role in tumoral angiogenesis. This study examined the relationship between tumour vascularization, a measure of tumour angiogenesis, and bcl-2 and p53 expression in operable non-small-cell lung cancer (NSCLC). The relationship between bcl-2, p53 and tumour vascularization and epidermal-growth-factor- receptor(EGFR) and c-erbB-2 expression was also studied. Tissue sections from resected tumour specimens of 107 NSCLC patients were evaluated immunohistochemically for vascular grade and bcl-2, p53, EGFR and c-erbB-2 expression. bcl-2 expression was found in 20/107 (19%) cases and was associated with squamous-cell histology (p = 0.03). A strong inverse relationship was found between bcl-2 expression and vascular grade (p = 0.005). All c-erbB-2-positive cases were negative for bcl-2 expression (p = 0.01). Overall no association was found between c-erbB-2 expression and vascular grade. However, in bcl-2-negative cases positive c-erbB-2 expression correlated with low angiogenesis (p = 0.05). No relationship was found between p53 and EGFR expression and bcl-2, c-erbB-2 or vascular grade. The improved prognosis reported in bcl-2-positive NSCLC may be related to low tumour vascularization. The results suggest that the anti-apoptotic gene bcl- 2 plays a role in regulating tumour angiogenesis. Since normal lung epithelium expresses bcl-2, a sequence of tumour progression involving loss of bcl-2, then activation of c-erbB-2 or increase in tumour vascularization is proposed.
Resumo:
The interactions of mesotetraphenyl porphyrin and its metallo derivatives with 2,4,5,7-tetra nitrofluorenone have been studied using spectroscopic methods. The association constants (K) for 1:1 complexes in Ch2Cl2Cl2 follow the order Pd+2>Co+2> Cu+2>VO+2>Ni+2>Zn+2. The values of K are accounted in terms of stereochemistry of MTPPs and the electronic configuration of the metal ions. The magnitude and direction of the proton NMR shifts of the acceptor and donor in the complexes and their ESR parameter furnish information as to the possible structures of these complexes in solution.