959 resultados para Chemical structures


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vitis vinifera L., the most widely cultivated fruit crop in the world, was the starting point for the development of this PhD thesis. This subject was exploited following on two actual trends: i) the development of rapid, simple, and high sensitive methodologies with minimal sample handling; and ii) the valuation of natural products as a source of compounds with potential health benefits. The target group of compounds under study were the volatile terpenoids (mono and sesquiterpenoids) and C13 norisoprenoids, since they may present biological impact, either from the sensorial point of view, as regards to the wine aroma, or by the beneficial properties for the human health. Two novel methodologies for quantification of C13 norisoprenoids in wines were developed. The first methodology, a rapid method, was based on the headspace solid-phase microextraction combined with gas chromatography-quadrupole mass spectrometry operating at selected ion monitoring mode (HS-SPME/GC-qMS-SIM), using GC conditions that allowed obtaining a C13 norisoprenoid volatile signature. It does not require any pre-treatment of the sample, and the C13 norisoprenoid composition of the wine was evaluated based on the chromatographic profile and specific m/z fragments, without complete chromatographic separation of its components. The second methodology, used as reference method, was based on the HS-SPME/GC-qMS-SIM, allowing the GC conditions for an adequate chromatographic resolution of wine components. For quantification purposes, external calibration curves were constructed with β-ionone, with regression coefficient (r2) of 0.9968 (RSD 12.51 %) and 0.9940 (RSD of 1.08 %) for the rapid method and for the reference method, respectively. Low detection limits (1.57 and 1.10 μg L-1) were observed. These methodologies were applied to seventeen white and red table wines. Two vitispirane isomers (158-1529 L-1) and 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) (6.42-39.45 μg L-1) were quantified. The data obtained for vitispirane isomers and TDN using the two methods were highly correlated (r2 of 0.9756 and 0.9630, respectively). A rapid methodology for the establishment of the varietal volatile profile of Vitis vinifera L. cv. 'Fernão-Pires' (FP) white wines by headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (HS-SPME/GCxGC-TOFMS) was developed. Monovarietal wines from different harvests, Appellations, and producers were analysed. The study was focused on the volatiles that seem to be significant to the varietal character, such as mono and sesquiterpenic compounds, and C13 norisoprenoids. Two-dimensional chromatographic spaces containing the varietal compounds using the m/z fragments 93, 121, 161, 175 and 204 were established as follows: 1tR = 255-575 s, 2tR = 0,424-1,840 s, for monoterpenoids, 1tR = 555-685 s, 2tR = 0,528-0,856 s, for C13 norisoprenoids, and 1tR = 695-950 s, 2tR = 0,520-0,960 s, for sesquiterpenic compounds. For the three chemical groups under study, from a total of 170 compounds, 45 were determined in all wines, allowing defining the "varietal volatile profile" of FP wine. Among these compounds, 15 were detected for the first time in FP wines. This study proposes a HS-SPME/GCxGC-TOFMS based methodology combined with classification-reference sample to be used for rapid assessment of varietal volatile profile of wines. This approach is very useful to eliminate the majority of the non-terpenic and non-C13 norisoprenic compounds, allowing the definition of a two-dimensional chromatographic space containing these compounds, simplifying the data compared to the original data, and reducing the time of analysis. The presence of sesquiterpenic compounds in Vitis vinifera L. related products, to which are assigned several biological properties, prompted us to investigate the antioxidant, antiproliferative and hepatoprotective activities of some sesquiterpenic compounds. Firstly, the antiradical capacity of trans,trans-farnesol, cis-nerolidol, α-humulene and guaiazulene was evaluated using chemical (DPPH• and hydroxyl radicals) and biological (Caco-2 cells) models. Guaiazulene (IC50= 0.73 mM) was the sesquiterpene with higher scavenger capacity against DPPH•, while trans,trans-farnesol (IC50= 1.81 mM) and cis-nerolidol (IC50= 1.48 mM) were more active towards hydroxyl radicals. All compounds, with the exception of α-humulene, at non-cytotoxic levels (≤ 1 mM), were able to protect Caco-2 cells from oxidative stress induced by tert-butyl hydroperoxide. The activity of the compounds under study was also evaluated as antiproliferative agents. Guaiazulene and cis-nerolidol were able to more effectively arrest the cell cycle in the S-phase than trans,trans-farnesol and α-humulene, being the last almost inactive. The relative hepatoprotection effect of fifteen sesquiterpenic compounds, presenting different chemical structures and commonly found in plants and plant-derived foods and beverages, was assessed. Endogenous lipid peroxidation and induced lipid peroxidation with tert-butyl hydroperoxide were evaluated in liver homogenates from Wistar rats. With the exception of α-humulene, all the sesquiterpenic compounds under study (1 mM) were effective in reducing the malonaldehyde levels in both endogenous and induced lipid peroxidation up to 35% and 70%, respectively. The developed 3D-QSAR models, relating the hepatoprotection activity with molecular properties, showed good fit (R2LOO > 0.819) with good prediction power (Q2 > 0.950 and SDEP < 2%) for both models. A network of effects associated with structural and chemical features of sesquiterpenic compounds such as shape, branching, symmetry, and presence of electronegative fragments, can modulate the hepatoprotective activity observed for these compounds. In conclusion, this study allowed the development of rapid and in-depth methods for the assessment of varietal volatile compounds that might have a positive impact on sensorial and health attributes related to Vitis vinifera L. These approaches can be extended to the analysis of other related food matrices, including grapes and musts, among others. In addition, the results of in vitro assays open a perspective for the promising use of the sesquiterpenic compounds, with similar chemical structures such as those studied in the present work, as antioxidants, hepatoprotective and antiproliferative agents, which meets the current challenges related to diseases of modern civilization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bioprocesses use microorganisms or cells in order to produce and/or obtain some desired products. Nowadays these strategies appear as a fundamental alternative to the traditional chemical processes. Amongst the many advantages associated to their use in the chemical, oil or pharmaceutical industries, their low cost, easily scale-up and low environmental impact should be highlighted. This work reports two examples of bioprocesses as alternatives to traditional chemical processes used by the oil and pharmaceutical industries. In the first part of this work it was studied an example of a bioprocess based on the use of microorganisms in enhanced oil recovery. Currently, due to high costs of oil and its scarcity, the enhanced oil recovery techniques become very attractive. Between the available techniques the use of microbial enhanced oil recovery (MEOR) has been highlighted. This process is based on the stimulation of indigenous microorganisms or by the injection of microorganism consortia to produce specific metabolites and hence increase the amount of oil recovered. In the first chapters of this work the isolation of several microorganisms from samples of paraffinic Brazilian oils is described, and their tensioactive and biodegradability properties are presented. Furthermore, the chemical structures of the biosurfactants produced by those isolates were also characterized. In the final chapter of the first part, the capabilities of some isolated bacteria to enhance the oil recovery of paraffinic Brazilian oils entrapped in sand-pack columns were evaluated. In the second part of this work it was investigated aqueous two-phase systems or aqueous biphasic systems (ABS) as extractive strategies for antibiotics directly from the fermented broth in which they are produced. To this goal, several aqueous two-phase systems composed of ionic liquids (ILs) and polymers were studied for the first time and their phase diagrams were determined. The novel ATPS appear as effective and economic methods to extract different biomolecules or/and biological products. Thus, aiming the initial antibiotics extraction purpose it was studied the influence of a wide range of ILs and polymers in the aqueous two-phase formation ability, as well as their influence in the partitioning of several type-molecules, such as amino acids, alkaloids and dyes. As a final chapter it is presented the capacity of these novel systems to extract the antibiotic tetracycline directly from the fermented broth of Streptomyces aureofaciens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Helicobacter pylori is a bacterial pathogen that affects more than half of the world’s population with gastro-intestinal diseases and is associated with gastric cancer. The cell surface of H. pylori is decorated with lipopolysaccharides (LPSs) composed of three distinct regions: a variable polysaccharide moiety (O-chain), a structurally conserved core oligosaccharide, and a lipid A region that anchors the LPS to the cell membrane. The O-chain of H. pylori LPS, exhibits unique oligosaccharide structures, such as Lewis (Le) antigens, similar to those present in the gastric mucosa and are involved in interactions with the host. Glucan, heptoglycan, and riban domains are present in the outer core region of some H. pylori LPSs. Amylose-like glycans and mannans are also constituents of some H. pylori strains, possibly co-expressed with LPSs. The complexity of H. pylori LPSs has hampered the establishment of accurate structure-function relationships in interactions with the host, and the design of carbohydrate-based therapeutics, such as vaccines. Carbohydrate microarrays are recent powerful and sensitive tools for studying carbohydrate antigens and, since their emergence, are providing insights into the function of carbohydrates and their involvement in pathogen-host interactions. The major goals of this thesis were the structural analysis of LPSs from H. pylori strains isolated from gastric biopsies of symptomatic Portuguese patients and the construction of a novel pathogen carbohydrate microarray of these LPSs (H. pylori LPS microarray) for interaction studies with proteins. LPSs were extracted from the cell surface of five H. pylori clinical isolates and one NCTC strain (26695) by phenol/water method, fractionated by size exclusion chromatography and analysed by gas chromatography coupled to mass spectrometry. The oligosaccharides released after mild acid treatment of the LPS were analysed by electrospray mass spectrometry. In addition to the conserved core oligosaccharide moieties, structural analyses revealed the presence of type-2 Lex and Ley antigens and N-acetyllactosamine (LacNAc) sequences, typically found in H. pylori strains. Also, the presence of O-6 linked glucose residues, particularly in LPSs from strains 2191 and NCTC 26695, pointed out to the expression of a 6-glucan. Other structural domains, namely ribans, composed of O-2 linked ribofuranose residues were observed in the LPS of most of H. pylori clinical isolates. For the LPS from strain 14382, large amounts of O-3 linked galactose units, pointing to the occurrence of a galactan, a domain recently identified in the LPS of another H. pylori strain. A particular feature to the LPSs from strains 2191 and CI-117 was the detection of large amounts of O-4 linked N-acetylglucosamine (GlcNAc) residues, suggesting the presence of chitin-like glycans, which to our knowledge have not been described for H. pylori strains. For the construction of the H. pylori LPS microarray, the structurally analysed LPSs, as well as LPS-derived oligosaccharide fractions, prepared as neoglycolipid (NGL) probes were noncovalently immobilized onto nitrocellulosecoated glass slides. These were printed together with NGLs of selected sequence defined oligosaccharides, bacterial LPSs and polysaccharides. The H. pylori LPS microarray was probed for recognition with carbohydratebinding proteins (CBPs) of known specificity. These included Le and blood group-related monoclonal antibodies (mAbs), plant lectins, a carbohydratebinding module (CBM) and the mammalian immune receptors DC-SIGN and Dectin-1. The analysis of these CBPs provided new information that complemented the structural analyses and was valuable in the quality control of the constructed microarray. Microarray analysis revealed the occurrence of type-2 Lex and Ley, but not type-1 Lea or Leb antigens, supporting the results obtained in the structural analysis. Furthermore, the H. pylori LPSs were recognised by DC-SIGN, a mammalian lectin known to interact with this bacterium through fucosylated Le epitopes expressed in its LPSs. The -fucose-specific lectin UEA-I, showed restricted binding to probes containing type-2 blood group H sequence and to the LPSs from strains CI-117 and 14382. The presence of H-type-2, as well Htype- 1 in the LPSs from these strains, was confirmed using specific mAbs. Although H-type-1 determinant has been reported for H. pylori LPSs, this is the first report of the presence of H-type-2 determinant. Microarray analysis also revealed that plant lectins known to bind 4-linked GlcNAc chitin oligosaccharide sequences bound H. pylori LPSs. STL, which exhibited restricted and strong binding to 4GlcNAc tri- and pentasaccharides, differentially recognised the LPS from the strain CI-117. The chitin sequences recognised in the LPS could be internal, as no binding was detected to this LPS with WGA, known to be specific for nonreducing terminal of 4GlcNAc sequence. Analyses of the H. pylori LPSs by SDS-PAGE and Western blot with STL provided further evidence for the presence of these novel domains in the O-chain region of this LPS. H. pylori LPS microarray was also applied to analysis of two human sera. The first was from a case infected with H. pylori (H. pylori+ CI-5) and the second was from a non-infected control.The analysis revealed a higher IgG-reactivity towards H. pylori LPSs in the H. pylori+ serum, than the control serum. A specific IgG response was observed to the LPS isolated from the CI-5 strain, which caused the infection. The present thesis has contributed to extension of current knowledge on chemical structures of LPS from H. pylori clinical isolates. Furthermore, the H. pylori LPS microarray constructed enabled the study of interactions with host proteins and showed promise as a tool in serological studies of H. pyloriinfected individuals. Thus, it is anticipated that the use of these complementary approaches may contribute to a better understanding of the molecular complexity of the LPSs and their role in pathogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de doutoramento, Informática (Bioinformática), Universidade de Lisboa, Faculdade de Ciências, 2014

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Korean mondshood root polysaccharides (KMPS) isolated from the root of Aconitum coreanum (Lévl.) Rapaics have shown anti-inflammatory activity, which is strongly influenced by their chemical structures and chain conformations. However, the mechanisms of the anti-inflammatory effect by these polysaccharides have yet to be elucidated. A RG-II polysaccharide (KMPS-2E, Mw 84.8 kDa) was isolated from KMPS and its chemical structure was characterized by FT-IR and NMR spectroscopy, gas chromatography–mass spectrometry and high-performance liquid chromatography. The backbone of KMPS-2E consisted of units of [→6) -β-D-Galp (1→3)-β-L-Rhap-(1→4)-β-D-GalpA-(1→3)-β-D-Galp-(1→] with the side chain →5)-β-D-Arap (1→3, 5)-β-D-Arap (1→ attached to the backbone through O-4 of (1→3,4)-L-Rhap. T-β-D-Galp is attached to the backbone through O-6 of (1→3,6)-β-D-Galp residues and T-β-D-Ara is connected to the end group of each chain. The anti-inflammatory effects of KMPS-2E and the underlying mechanisms using lipopolysaccharide (LPS) - stimulated RAW 264.7 macrophages and carrageenan-induced hind paw edema were investigated. KMPS-2E (50, 100 and 200 µg/mL) inhibits iNOS, TLR4, phospho-NF-κB–p65 expression, phosphor-IKK, phosphor-IκB-α expression as well as the degradation of IκB-α and the gene expression of inflammatory cytokines (TNF-α, IL-1β, iNOS and IL-6) mediated by the NF-κB signal pathways in macrophages. KMPS-2E also inhibited LPS-induced activation of NF-κB as assayed by electrophorectic mobility shift assay (EMSA) in a dose-dependent manner and it reduced NF-κB DNA binding affinity by 62.1% at 200µg/mL. In rats, KMPS-2E (200 mg/kg) can significantly inhibit carrageenan-induced paw edema as ibuprofen (200 mg/kg) within 3 h after a single oral dose. The results indicate that KMPS-2E is a promising herb-derived drug against acute inflammation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sweroside, a major active iridoid in Swertia pseudochinensis Hara, is recognized as an effective agent in the treatment of liver injury. Based on previous reports, the relatively short half-life (64 min) and poor bioavailability (approximately 0.31%) in rats suggested that not only sweroside itself but also its metabolites could be responsible for the observed hepato-protective effect. However, few studies have been carried out on the metabolism of sweroside. Therefore, the present study aimed at identifying the metabolites of sweroside in rat urine after a single oral dose (100 mg/kg). With ultra-high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC/Q-TOF-MS), the metabolic profile revealed 11 metabolites in rat urine, including phase I, phase II and aglycone-related products. The chemical structures of metabolites were proposed based on accurate mass measurements of protonated or deprotonated molecules and their fragmentation patterns. Our findings showed that the aglycone of sweroside (M05) and its glucuronide conjugate (M06) were principal circulating metabolites in rats. While several other metabolic transformations, occurring via reduction, N-heterocyclization and N-acetylation after deglycosylation, were also observed. Two metabolites (M05 and M06) were isolated from the rat urine for structural elucidation and identifcation of reaction sites. Both M05 and M06 were characterized by 1H, 13C and two-dimensional nuclear magnetic resonance (NMR) spectroscopy. UHPLC/Q-TOF-MS analysis has provided an important analytical platform to gather metabolic profile of sweroside.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Captan and folpet are fungicides largely used in agriculture. They have similar chemical structures, except that folpet has an aromatic ring unlike captan. Their half-lives in blood are very short, given that they are readily broken down to tetrahydrophthalimide (THPI) and phthalimide (PI), respectively. Few authors measured these biomarkers in plasma or urine, and analysis was conducted either by gas chromatography coupled to mass spectrometry or liquid chromatography with UV detection. The objective of this study was thus to develop simple, sensitive and specific liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (LC/APCI-MS/MS) methods to quantify both THPI and PI in human plasma and urine. Briefly, deuterated THPI was added as an internal standard and purification was performed by solid-phase extraction followed by LC/APCI-MS/MS analysis in negative ion mode for both compounds. Validation of the methods was conducted using spiked blank plasma and urine samples at concentrations ranging from 1 to 250 μg/L and 1 to 50 μg/L, respectively, along with samples of volunteers and workers exposed to captan or folpet. The methods showed a good linearity (R (2) > 0.99), recovery (on average 90% for THPI and 75% for PI), intra- and inter-day precision (RSD, <15%) and accuracy (<20%), and stability. The limit of detection was 0.58 μg/L in urine and 1.47 μg/L in plasma for THPI and 1.14 and 2.17 μg/L, respectively, for PI. The described methods proved to be accurate and suitable to determine the toxicokinetics of both metabolites in human plasma and urine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les dernières décennies ont été marquées par une augmentation du nombre des cas de cancers, ce qui a subséquemment conduit à une augmentation dans la consommation des agents de chimiothérapie. La toxicité et le caractère cancérogène de ces molécules justifient l’intérêt crucial porté à leur égard. Quelques études ont fait l’objet de détection et de quantification des agents de chimiothérapie dans des matrices environnementales. Dans ce projet, une méthode utilisant la chromatographie liquide couplée à la spectrométrie de masse en tandem (LC-MS/MS) précédée d’une extraction sur phase solide (SPE) automatisée ou en ligne a été développée pour la détection et la quantification d’un groupe de six agents de chimiothérapie. Parmi ceux-ci figurent les plus utilisés au Québec (gemcitabine, méthotrexate, cyclophosphamide, ifosfamide, irinotécan, épirubicine) et présentant des propriétés physico-chimiques et des structures chimiques différentes. La méthode développée a été validée dans une matrice réelle représentant l’affluent d’une station d’épuration dans la région de Montréal. Deux des six composés cytotoxiques étudiés en l’occurrence (cyclophosphamide et méthotrexate) ont été détectés dans huit échantillons sur les neuf qui ont été recensés, essentiellement au niveau de l’affluent et l’effluent de quelques stations d’épuration de la région de Montréal. Les résultats des analyses effectuées sur les échantillons réels ont montré qu’il n’y avait pas de différence significative dans la concentration entre l’affluent et l’effluent, et donc que les systèmes d’épuration semblent inefficaces pour la dégradation de ces molécules.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bioactivity of the flavonoids pinostrobin (1), pinocembrin (2), tectochrysin (3), galangin 3-methyl ether (4), and tiliroside (5) isolated from Lychnophora markgravii aerial parts was investigated in vitro against amastigote stages of Leishmania amazonensis. The compounds were isolated by several chromatographic techniques and their chemical structures were established by ESI-MS and NMR spectroscopic data. The flavonoids 1 and 3 were the most active compounds; they markedly reduced the viability of Leishmania amastigotes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pH-structure correlation of the products of aniline peroxydisulfate reaction was mainly investigated by resonance Raman spectroscopy. The reactions of aniline and ammonium peroxydisulfate were carried out in aqueous solutions of initial pH ranging from 4.9 to 13.2 and monomer/oxidant molar ratio of 4/1. For an initial pH of 4.9, the spectroscopic techniques showed that the emeraldine salt form of polyaniline (PANI-ES) is the main product, corroborating that the usual head-to-tail coupling mechanism is taking place. The resonance Raman spectra at 1064 nm exciting wavelength were useful to detect the emeraldine salt as a minor product for reactions at an initial pH of 5.3-11.5. The Raman spectra of the main product of the reaction at initial pH of 13.2 excited at 1064 and 413.1 nm showed new spectral features consistent with 1,4-Michael-type adducts of aniline monomers and 1,4-benzoquinone-monoimine unit. These compounds and their products of hydrolysis/oxidation are the predominant species for the reaction media of initial pH from 5.3 to 13.2. In order to get PANI with different nanoscale morphologies, a pH value of more than 0 or 1 was used in the aniline polymerization. The spectroscopic data obtained in this work reveal that head-to-tail coupling does not occur when aniline reacts at media pH higher than about 5. It is suggested that chemical structures of the products of aniline oxidation by an unusual mechanism are the driving force for the development of assorted morphologies. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The essential oil from leaves of Guarea guidonia was subjected to chromatographic separation procedures to afford nine sesquiterpenes; two of them are new eudesmane derivatives. The chemical structures of the obtained compounds were characterised by spectrometric analysis, mainly mass spectrometry and NMR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two new presilphiperfolane sesquiterpenes, 1 and 2, were isolated from the ethyl acetate extract of Xylaria sp., obtained from the leaves of Piper aduncum, along with two known eremophilane sesquiterpenes, phaseolinone (3) and phomenone (4). Chemical structures of 1 and 2 were established by analysis of spectroscopic data. The four compounds were tested in vitro for antifungal and cytotoxicity activities using CHO (Chinese hamster ovary). Compounds 1 and 2 did not show any antifungal and cytotoxic activity. Compounds 3 and 4 displayed moderate cytotoxic activities, as well as 4 antifungal activity. (C) 2010 Phytochemical Society of Europe. Published by Elsevier B. V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hologram quantitative structure-activity relationships (HQSAR) were applied to a data set of 41 cruzain inhibitors. The best HQSAR model (Q(2) = 0.77; R-2 = 0.90) employing Surflex-Sim, as training and test sets generator, was obtained using atoms, bonds, and connections as fragment distinctions and 4-7 as fragment size. This model was then used to predict the potencies of 12 test set compounds, giving satisfactory predictive R-2 value of 0,88. The contribution maps obtained from the best HQSAR model are in agreement with the biological activities of the study compounds. The Trypanosoma cruzi cruzain shares high similarity with the mammalian homolog cathepsin L. The selectivity toward cruzam was checked by a database of 123 compounds, which corresponds to the 41 cruzain inhibitors used in the HQSAR model development plus 82 cathepsin L inhibitors. We screened these compounds by ROCS (Rapid Overlay of Chemical Structures), a Gaussian-shape volume overlap filter that can rapidly identify shapes that match the query molecule. Remarkably, ROCS was able to rank the first 37 hits as being only cruzain inhibitors. In addition, the area under the curve (AUC) obtained with ROCS was 0.96, indicating that the method was very efficient to distinguishing between cruzain and cathepsin L inhibitors. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sulfated Polysaccharides with unique chemical structures and important biological activities has been found in a diversity of sea invertebrates. For that, to exist a huger interest on the biotechnology field in the research theses sulfated compounds isolated from sea organisms. Despite the privileged brazilian position for these compounds attainment, there are still a few scientific informations about the isolated substances and their biological activities. A head the displayed, the present work has for objectives, to evaluate the pharmacological properties of the glycosaminoglycans isolated from the sea shrimp Litopenaeus schimitti on homeostasis, blood coagulation, leukocytes migration and platelet/leukocyte adhesion. For this, yhe glycosaminoglycans were extracted from crustacean tissues by proteolysis, fractionation with acetone and later submitted to pharmacological assays. The crustacean tissues showed compounds heparin-like, with anticoagulant activity of 45 IU/mg and 90 IU/mg, respectively. These molecules showed low residual hemorrhagic effects in the tested concentration (100 µg/mL), when compared to unfractionated commercial heparin (UFH). Another dermatan sulfate-like compound, predominately constituted for disulfated disaccharides, was isolated from crustacean abdomen. This compound showed an efficient effect on leukocytes migration inhibition, in the concentration of 15 µg/mL, reducing the cellular infiltration in 65% when compared to the controlled animals. In this same concentration, the DS reduced in 60% the protein concentration of the peritoneal exudates. In the concentration, this compound of 0.5 mg/mL, it was capable to reduce in 40% platelet/leukocytes adhesion. Our data demonstrate that these sulfated polysaccharides isolated from the shrimp L. schimitti will can be used as bioactive compounds, appearing as active principles for pharmacological development, anticoagulants and inflammatory response regulators