996 resultados para Characteristic function
Resumo:
Background: Cerebral palsy (CP) presents changes in posture and movement as a core characteristic, which requires therapeutic monitoring during the habilitation or rehabilitation of children. Besides clinical treatment, it is fundamental that professionals use systems of evaluation to quantify the difficulties presented to the individual and assist in the organization of a therapeutic program. The aim of this study was to quantitatively verify the performance of children with spastic di-paresia type CP. Methods: The Pediatric Evaluation of Disability Inventory (PEDI) and Gross Motor Function Classification System (GMFM) tests were used and classification made through the GMFCS in the assessment of 7 patients with CP, 4 females and 3 males, average age of 9 years old. Results: According to GMFCS scales, 17% (n=1) were level II and 83% (n=6) were level III. The PEDI test and 88 GMFM items were used in the area of mobility. We observed that there was high correlation between mobility and gross motor function with Pearson's correlation coefficient =0.929) showing the likely impact of these areas in the functional skills and the quality of life of these patients. Conclusion: We suggest the impact of the limitation of the areas in functional skills and quality of life of these patients.
Resumo:
Distances walked in walking tests are important functional markers, although they are not accepted as defining characteristics of Ineffective Peripheral Tissue Perfusion. The aims of this study were to verify the distances participants with and without this nursing diagnosis walked in the six-minute walk test and if these measures may be considered defining characteristics of this phenomenon. Participants with (group A; n=65) and without (group B; n=17) this nursing diagnosis were evaluated regarding physical examination, vascular function and functional capacity. Participants of group A seemed to have worse vascular function and functional capacity compared with those of group B. Pain-free travelled distance was predictive of the nursing diagnosis. These results are important for the refinement of this diagnosis. In conclusion, this study provides evidences that the distances walked in the six-minute walk test may be considered defining characteristics of Ineffective Peripheral Tissue Perfusion.
Resumo:
The vast majority of known proteins have not yet been experimentally characterized and little is known about their function. The design and implementation of computational tools can provide insight into the function of proteins based on their sequence, their structure, their evolutionary history and their association with other proteins. Knowledge of the three-dimensional (3D) structure of a protein can lead to a deep understanding of its mode of action and interaction, but currently the structures of <1% of sequences have been experimentally solved. For this reason, it became urgent to develop new methods that are able to computationally extract relevant information from protein sequence and structure. The starting point of my work has been the study of the properties of contacts between protein residues, since they constrain protein folding and characterize different protein structures. Prediction of residue contacts in proteins is an interesting problem whose solution may be useful in protein folding recognition and de novo design. The prediction of these contacts requires the study of the protein inter-residue distances related to the specific type of amino acid pair that are encoded in the so-called contact map. An interesting new way of analyzing those structures came out when network studies were introduced, with pivotal papers demonstrating that protein contact networks also exhibit small-world behavior. In order to highlight constraints for the prediction of protein contact maps and for applications in the field of protein structure prediction and/or reconstruction from experimentally determined contact maps, I studied to which extent the characteristic path length and clustering coefficient of the protein contacts network are values that reveal characteristic features of protein contact maps. Provided that residue contacts are known for a protein sequence, the major features of its 3D structure could be deduced by combining this knowledge with correctly predicted motifs of secondary structure. In the second part of my work I focused on a particular protein structural motif, the coiled-coil, known to mediate a variety of fundamental biological interactions. Coiled-coils are found in a variety of structural forms and in a wide range of proteins including, for example, small units such as leucine zippers that drive the dimerization of many transcription factors or more complex structures such as the family of viral proteins responsible for virus-host membrane fusion. The coiled-coil structural motif is estimated to account for 5-10% of the protein sequences in the various genomes. Given their biological importance, in my work I introduced a Hidden Markov Model (HMM) that exploits the evolutionary information derived from multiple sequence alignments, to predict coiled-coil regions and to discriminate coiled-coil sequences. The results indicate that the new HMM outperforms all the existing programs and can be adopted for the coiled-coil prediction and for large-scale genome annotation. Genome annotation is a key issue in modern computational biology, being the starting point towards the understanding of the complex processes involved in biological networks. The rapid growth in the number of protein sequences and structures available poses new fundamental problems that still deserve an interpretation. Nevertheless, these data are at the basis of the design of new strategies for tackling problems such as the prediction of protein structure and function. Experimental determination of the functions of all these proteins would be a hugely time-consuming and costly task and, in most instances, has not been carried out. As an example, currently, approximately only 20% of annotated proteins in the Homo sapiens genome have been experimentally characterized. A commonly adopted procedure for annotating protein sequences relies on the "inheritance through homology" based on the notion that similar sequences share similar functions and structures. This procedure consists in the assignment of sequences to a specific group of functionally related sequences which had been grouped through clustering techniques. The clustering procedure is based on suitable similarity rules, since predicting protein structure and function from sequence largely depends on the value of sequence identity. However, additional levels of complexity are due to multi-domain proteins, to proteins that share common domains but that do not necessarily share the same function, to the finding that different combinations of shared domains can lead to different biological roles. In the last part of this study I developed and validate a system that contributes to sequence annotation by taking advantage of a validated transfer through inheritance procedure of the molecular functions and of the structural templates. After a cross-genome comparison with the BLAST program, clusters were built on the basis of two stringent constraints on sequence identity and coverage of the alignment. The adopted measure explicity answers to the problem of multi-domain proteins annotation and allows a fine grain division of the whole set of proteomes used, that ensures cluster homogeneity in terms of sequence length. A high level of coverage of structure templates on the length of protein sequences within clusters ensures that multi-domain proteins when present can be templates for sequences of similar length. This annotation procedure includes the possibility of reliably transferring statistically validated functions and structures to sequences considering information available in the present data bases of molecular functions and structures.
Resumo:
In this Thesis we consider a class of second order partial differential operators with non-negative characteristic form and with smooth coefficients. Main assumptions on the relevant operators are hypoellipticity and existence of a well-behaved global fundamental solution. We first make a deep analysis of the L-Green function for arbitrary open sets and of its applications to the Representation Theorems of Riesz-type for L-subharmonic and L-superharmonic functions. Then, we prove an Inverse Mean value Theorem characterizing the superlevel sets of the fundamental solution by means of L-harmonic functions. Furthermore, we establish a Lebesgue-type result showing the role of the mean-integal operator in solving the homogeneus Dirichlet problem related to L in the Perron-Wiener sense. Finally, we compare Perron-Wiener and weak variational solutions of the homogeneous Dirichlet problem, under specific hypothesis on the boundary datum.
Resumo:
Teeth are brittle and highly susceptible to cracking. We propose that observations of such cracking can be used as a diagnostic tool for predicting bite force and inferring tooth function in living and fossil mammals. Laboratory tests on model tooth structures and extracted human teeth in simulated biting identify the principal fracture modes in enamel. Examination of museum specimens reveals the presence of similar fractures in a wide range of vertebrates, suggesting that cracks extended during ingestion or mastication. The use of ‘fracture mechanics’ from materials engineering provides elegant relations for quantifying critical bite forces in terms of characteristic tooth size and enamel thickness. The role of enamel microstructure in determining how cracks initiate and propagate within the enamel (and beyond) is discussed. The picture emerges of teeth as damage-tolerant structures, full of internal weaknesses and defects and yet able to contain the expansion of seemingly precarious cracks and fissures within the enamel shell. How the findings impact on dietary pressures forms an undercurrent of the study.
Resumo:
The purpose of the study was to evaluate observer performance in the detection of pneumothorax with cesium iodide and amorphous silicon flat-panel detector radiography (CsI/a-Si FDR) presented as 1K and 3K soft-copy images. Forty patients with and 40 patients without pneumothorax diagnosed on previous and subsequent digital storage phosphor radiography (SPR, gold standard) had follow-up chest radiographs with CsI/a-Si FDR. Four observers confirmed or excluded the diagnosis of pneumothorax according to a five-point scale first on the 1K soft-copy image and then with help of 3K zoom function (1K monitor). Receiver operating characteristic (ROC) analysis was performed for each modality (1K and 3K). The area under the curve (AUC) values for each observer were 0.7815, 0.7779, 0.7946 and 0.7066 with 1K-matrix soft copies and 0.8123, 0.7997, 0.8078 and 0.7522 with 3K zoom. Overall detection of pneumothorax was better with 3K zoom. Differences between the two display methods were not statistically significant in 3 of 4 observers (p-values between 0.13 and 0.44; observer 4: p = 0.02). The detection of pneumothorax with 3K zoom is better than with 1K soft copy but not at a statistically significant level. Differences between both display methods may be subtle. Still, our results indicate that 3K zoom should be employed in clinical practice.
Resumo:
In protein folding and secretion disorders, activation of endoplasmic reticulum (ER) stress signaling (ERSS) protects cells, alleviating stress that would otherwise trigger apoptosis. Whether the stress-surviving cells resume normal function is not known. We studied the in vivo impact of ER stress in terminally differentiating hypertrophic chondrocytes (HCs) during endochondral bone formation. In transgenic mice expressing mutant collagen X as a consequence of a 13-base pair deletion in Col10a1 (13del), misfolded alpha1(X) chains accumulate in HCs and elicit ERSS. Histological and gene expression analyses showed that these chondrocytes survived ER stress, but terminal differentiation is interrupted, and endochondral bone formation is delayed, producing a chondrodysplasia phenotype. This altered differentiation involves cell-cycle re-entry, the re-expression of genes characteristic of a prehypertrophic-like state, and is cell-autonomous. Concomitantly, expression of Col10a1 and 13del mRNAs are reduced, and ER stress is alleviated. ERSS, abnormal chondrocyte differentiation, and altered growth plate architecture also occur in mice expressing mutant collagen II and aggrecan. Alteration of the differentiation program in chondrocytes expressing unfolded or misfolded proteins may be part of an adaptive response that facilitates survival and recovery from the ensuing ER stress. However, the altered differentiation disrupts the highly coordinated events of endochondral ossification culminating in chondrodysplasia.
Resumo:
Two distinct classes of neurons have been examined in the nervous system of Aplysia. The membrane properties of these neurons are regulated by intracellular signalling molecules in both a short-term and a long-term fashion.^ The role of the phosphatidylinositol cycle in the control of neuronal properties was studied in a class of bursting pacemaker cells, the left upper-quadrant bursting neurons (cells L2, L3, L4, and L6) of the abdominal ganglion of Aplysia. These cells display a regular burst-firing pattern that is controlled by cyclic changes of intracellular Ca$\sp{2+}$ that occur during the bursting rhythm. The characteristic bursting pattern of these neurons occurs within a range of membrane potentials ($-35$ to $-50$ mV) called the pacemaker range. Intracellular pressure injection of inositol 1,4,5-trisphosphate (IP$\sb3$) altered the bursting rhythm of the bursting cells. Injection of IP$\sb3$ induced a brief depolarization that was followed by a long-lasting (2-15 min) hyperpolarization. When cells were voltage-clamped at potentials within the pacemaker range, injection of IP$\sb3$ generally induced a biphasic response that had a total duration of 2-15 min. An initial inward shift in holding current (I$\sb{\rm in}$), which lasted 5-120 sec, was followed by a slow outward shift in holding current (I$\sb{\rm out}$). At membrane potentials more negative than $-40$ mV, I$\sb{\rm in}$ was associated with a small and relatively voltage-independent increase in membrane conductance. I$\sb{\rm in}$ was not blocked by bath application of TTX or Co$\sp{2+}$. Although I$\sb{\rm in}$ was activated by injection of IP$\sb3$, it was not blocked by iontophoretic injection of ethyleneglycol-bis-(beta-aminoethyl ether), N, N$\sp\prime$-tetraacetic acid (EGTA) sufficient to block the Ca$\sp{2+}$-activated inward tail current (I$\sb{\rm B}$).^ Long-term (lasting at least 24 hours) effects of adenylate cyclase activation were examined in a well characterized class of mechanosensory neurons in Aplysia. The injected cells were analyzed 24 hours later by two-electrode voltage-clamp techniques. We found that K$\sp+$ currents of these cells were reduced 24 hours after injection of cAMP. The currents that were reduced by cAMP were very similar to those found to be reduced 24 hours after behavioral sensitization. These results suggest that cAMP is part of the intracellular signal that induces long-term sensitization in Aplysia. (Abstract shortened with permission of author.) ^
Resumo:
Vascular endothelial growth factor and its receptors, FLK1/KDR and FLT1, are key regulators of angiogenesis. Unlike FLK1/KDR, the role of FLT1 has remained elusive. FLT1 is produced as soluble (sFLT1) and full-length isoforms. Here, we show that pericytes from multiple tissues produce sFLT1. To define the biologic role of sFLT1, we chose the glomerular microvasculature as a model system. Deletion of Flt1 from specialized glomerular pericytes, known as podocytes, causes reorganization of their cytoskeleton with massive proteinuria and kidney failure, characteristic features of nephrotic syndrome in humans. The kinase-deficient allele of Flt1 rescues this phenotype, demonstrating dispensability of the full-length isoform. Using cell imaging, proteomics, and lipidomics, we show that sFLT1 binds to the glycosphingolipid GM3 in lipid rafts on the surface of podocytes, promoting adhesion and rapid actin reorganization. sFLT1 also regulates pericyte function in vessels outside of the kidney. Our findings demonstrate an autocrine function for sFLT1 to control pericyte behavior.
Resumo:
The main goal of this study was to relate physical changes in image quality measured by Modulation Transfer Function (MTF) to diagnostic accuracy.^ One Hundred and Fifty Kodak Min-R screen/film combination conventional craniocaudal mammograms obtained with the Pfizer Microfocus Mammographic system were selected from the files of the Department of Radiology, at M.D. Anderson Hospital and Tumor Institute.^ The mammograms included 88 cases with a variety of benign diagnosis and 62 cases with a variety of malignant biopsy diagnosis. The average age of the patient population was 55 years old. 70 cases presented calcifications with 30 cases having calcifications smaller than 0.5mm. 46 cases presented irregular bordered masses larger than 1 cm. 30 cases presented smooth bordered masses with 20 larger than 1 cm.^ Four separated copies of the original images were made each having a different change in the MTF using a defocusing technique whereby copies of the original were obtained by light exposure through different thicknesses (spacing) of transparent film base.^ The mammograms were randomized, and evaluated by three experienced mammographers for the degree of visibility of various anatomical breast structures and pathological lesions (masses and calicifications), subjective image quality, and mammographic interpretation.^ 3,000 separate evaluations were anayzed by several statistical techniques including Receiver Operating Characteristic curve analysis, McNemar test for differences between proportions and the Landis et al. method of agreement weighted kappa for ordinal categorical data.^ Results from the statistical analysis show: (1) There were no statistical significant differences in the diagnostic accuracy of the observers when diagnosing from mammograms with the same MTF. (2) There were no statistically significant differences in diagnostic accuracy for each observer when diagnosing from mammograms with the different MTF's used in the study. (3) There statistical significant differences in detail visibility between the copies and the originals. Detail visibility was better in the originals. (4) Feature interpretations were not significantly different between the originals and the copies. (5) Perception of image quality did not affect image interpretation.^ Continuation and improvement of this research ca be accomplished by: using a case population more sensitive to MTF changes, i.e., asymptomatic women with minimum breast cancer, more observers (including less experienced radiologists and experienced technologists) must collaborate in the study, and using a minimum of 200 benign and 200 malignant cases.^
Resumo:
Myxococcus xanthus is a Gram-negative soil bacterium that undergoes multicellular development when high-density cells are starved on a solid surface. Expression of the 4445 gene, predicted to encode a periplasmic protein, commences 1.5 h after the initiation of development and requires starvation and high density conditions. Addition of crude or boiled supernatant from starving high-density cells restored 4445 expression to starving low-density cells. Addition of L-threonine or L-isoleucine to starving low-density cells also restored 4445 expression, indicating that the high-density signaling activity present in the supernatant might be composed of extracellular amino acids or small peptides. To investigate the circuitry integrating these starvation and high-density signals, the cis- and trans-acting elements controlling 4445 expression were identified. The 4445 transcription start site was determined by primer extension analysis to be 58 by upstream of the predicted translation start site. The promoter region contained a consensus sequence characteristic of e&barbelow;xtrac&barbelow;ytoplasmic f&barbelow;unction (ECF) sigma factor-dependent promoters, suggesting that 4445 expression might be regulated by an ECF sigma factor-dependent pathway, which are known to respond to envelope stresses. The small size of the minimum regulatory region, identified by 5′-end deletion analysis as being only 66 by upstream of the transcription start site, suggests that RNA polymerase could be the sole direct regulator of 4445 expression. To identify trans-acting negative regulators of 4445 expression, a strain containing a 4445-lacZ was mutagenized using the Himar1-tet transposon. The four transposon insertions characterized mapped to an operon encoding a putative ECF sigma factor, ecfA; an anti-sigma factor, reaA; and a negative regulator, reaB. The reaA and the reaB mutants expressed 4445 during growth and development at levels almost 100-fold higher than wild type, indicating that these genes encode negative regulators. The ecfA mutant expressed 4445-lacZ at basal levels, indicating that ecfA is a positive regulator. High Mg2+ concentrations over-stimulated this ecfA pathway possibly due to the depletion of exopolysaccharides and assembled type IV pili. These data indicate that the ecfA operon encodes a new regulatory stress pathway that integrates and transduces starvation and cell density cues during early development and is also responsive to cell-surface alterations.^
Resumo:
In the mouse, gamete recognition is mediated in part by the binding of sperm surface $\beta$1,4 galactosyltransferase (GalTase) to specific oligosaccharide residues on the zona pellucida ZP3. The expression of GalTase on the sperm surface is regulated by alleles within the distal segment of the T/t complex and results in a haploid-specific increase in GalTase expression on spermatids and sperm from t-bearing males, suggesting that differences in sperm GalTase activity may contribute to t-sperm transmission ratio distortion. In this study, the expression of GalTase RNA during wild-type and T/t-mutant spermatogenesis was characterized and the role of GalTase was analyzed in transmission ratio distortion. It was found that spermatogenic cells predominantly express the long form of the GalTase RNA, which encodes the GalTase protein that is preferentially targeted to the cell surface in somatic cells. In wild-type testes, GalTase RNA accumulates during the maturation of primary spermatocytes, reaches peak levels prior to meiosis, and decreases and meiosis. GalTase RNA accumulates to similar levels during the maturation of +/t and t/t primary spermatocytes, but unlike wild-type, the level of GalTase RNA in t-spermatocytes remains elevated during meiotic division. Consequently, spermatids in t-mutant testes inherit higher levels of GalTase RNA than do wild-type spermatids, which likely accounts for the haploid-specific increase in surface GalTase activity characteristic of spermatids from t-bearing mice.^ The functional significance of the increased GalTase activity during t-sperm transmission ratio distortion was determined by examining the distribution of GalTase RNA and surface GalTase protein in haploid spermatids from +/t males. Results show that +- and t-spermatids have similar levels of both GalTase RNA and protein, indicating that transmission ratio distortion in +/t mice is not likely due to haploid-specific differences in sperm surface GalTase activity.^ The presence of GalTase on the surface of an early spermatogenic cells before it is required on the mature sperm to perform its function during gamete binding suggests a separate function for GalTase in Sertoli-germ cell adhesion. Studies indicate that cell surface GalTase partly mediates the initial adhesion of pachytene spermatocytes, but not haploid spermatids, to Sertoli cells. ^
Resumo:
The complement system functions as a major effector for both the innate and adaptive immune response. Activation of the complement cascade by either the classical, alternative, or lectin pathway promotes the proteolysis of C3 and C5 thereby generating C3a and C5a. Referred to as anaphylatoxins, the C3a and C5a peptides mediate biological effects upon binding to their respective receptors; C3a binds to the C3a receptor (C3aR) while C5a binds to the C5a receptor (C5aR, CD88). Both C3a and C5a are known for their broad proinflammatory effects. Elevated levels of both peptides have been isolated from patients with a variety of inflammatory diseases such as COPD, asthma, RA, SLE, and sepsis. Recent studies suggest that C5a is a critical component in the acquired neutrophil dysfunction, coagulopathy, and progressive multi-organ dysfunction characteristic of sepsis. The primary hypothesis of this dissertation was that preventing C3a-C3aR and C5a-C5aR mediated pro-inflammatory effects would improve survival in endotoxic, bacteremic and septic shock. To test this hypothesis, the murine C3aR and C5aR genes were disrupted. Following disruption of both the C3aR and C5aR genes, no abnormalities were identified other than the absence of their respective mRNA and protein. In models of both endotoxic and bacteremic shock, C3aR deficient mice suffered increased mortality when compared to their wild type littermates. C3aR deficient mice also had elevated circulating IL-1β levels. Using a model of sepsis, C3aR deficient mice had a higher circulating concentration of IL-6 and decreased peritoneal inflammatory infiltration. While these results were unexpected, they support an emerging role for C3a in immunomodulation. In contrast, following endotoxic or bacteremic shock, C5aR deficient mice experienced increased survival, less hemoconcentration and less thrombocytopenia. It was later determined that C5a mediated histamine release significantly contributes to host morbidity and mortality in bacteremic shock. These studies provide evidence that C5a functions primarily as a proinflammatory molecule in models of endotoxic and bacteremic shock. In the same models, C3a-C3aR interactions suppress the inflammatory response and protect the host. Collectively, these results present in vivo evidence that C3a and C5a have divergent biological functions. ^
Resumo:
Intermittency phenomenon is a continuous route from regular to chaotic behaviour. Intermittency is an occurrence of a signal that alternates chaotic bursts between quasi-regular periods called laminar phases, driven by the so called reinjection probability density function (RPD). In this paper is introduced a new technique to obtain the RPD for type-II and III intermittency. The new RPD is more general than the classical one and includes the classical RPD as a particular case. The probabilities of the laminar length, the average laminar lengths and the characteristic relations are determined with and without lower bound of the reinjection in agreement with numerical simulations. Finally, it is analyzed the noise effect in intermittency. A method to obtain the noisy RPD is developed extending the procedure used in the noiseless case. The analytical results show a good agreement with numerical simulations.
Resumo:
The water time constant and mechanical time constant greatly influences the power and speed oscillations of hydro-turbine-generator unit. This paper discusses the turbine power transients in response to different nature and changes in the gate position. The work presented here analyses the characteristics of hydraulic system with an emphasis on changes in the above time constants. The simulation study is based on mathematical first-, second-, third- and fourth-order transfer function models. The study is further extended to identify discrete time-domain models and their characteristic representation without noise and with noise content of 10 & 20 dB signal-to-noise ratio (SNR). The use of self-tuned control approach in minimising the speed deviation under plant parameter changes and disturbances is also discussed.