980 resultados para Canning and preserving


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples of menus on p. 348-352.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Awarded second prize."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"References": p. 91-95.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Published by the corporation under its earlier name: California Fruit Growers Exchange.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At head of title: State of New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Grape drying is a slow and energy intensive process because the waxy peel has low permeability to moisture. Therefore, peel chemical and physical pretreatments are considered before drying in order to facilitate water diffusion. However, they cause heterogeneity in the waxes removal and problems during shelf-life. In this paper an alternative abrasive pretreatment of grape peel, for enhancing the drying rate and preserving the samples, was applied to Red Globe grapes. Convective drying experiments were carried out at 40-70 Centigrade and at 2.3 m/s air velocity. The effect of wax abrasive pretreatment on the drying kinetics and quality parameters of raisins was investigated. The results were compared with those of samples pretreated by dipping in alkaline ethyl oleate solution and untreated grapes. All the dried samples are darker than fresh one and shrunked. The samples pretreated by peel abrasion and dried at 50 centigrade showed the lowest color changes, less shrinkage and the best rehydration capacity. The drying kinetics and shrinkage curves were also analyzed using some commonly available empirical models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A numerical micro-scale model is developed to study the behavior of dendrite growth in presence of melt convection. In this method, an explicit, coupled enthalpy model is used to simulate the growth of an equiaxed dendrite, while a Volume of Fluid (VOF) method is used to track the movement of the dendrite in the convecting melt in a two-dimensional Eulerian framework. Numerical results demonstrate the effectiveness of the enthalpy model in simulating the dendritic growth involving complex shape, and the accuracy of VOF method in conserving mass and preserving the complex dendritic shape during motion. Simulations are performed in presence of uniform melt flow for both fixed and moving dendrites, and the difference in dendrite morphology is shown.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Commonly adopted approaches to managing small-scale fisheries (SSFs) in developing countries do not ensure sustainability. Progress is impeded by a gap between innovative SSF research and slower-moving SSF management. The paper aims to bridge the gap by showing that the three primary bases of SSF management--ecosystem, stakeholders’ rights and resilience--are mutually consistent and complementary. It nominates the ecosystem approach as an appropriate starting point because it is established in national and international law and policy. Within this approach, the emerging resilience perspective and associated concepts of adaptive management and institutional learning can move management beyond traditional control and resource-use optimization, which largely ignore the different expectations of stakeholders; the complexity of ecosystem dynamics; and how ecological, social, political and economic subsystems are linked. Integrating a rights-based perspective helps balance the ecological bias of ecosystem-based and resilience approaches. The paper introduces three management implementation frameworks that can lend structure and order to research and management regardless of the management approach chosen. Finally, it outlines possible research approaches to overcome the heretofore limited capacity of fishery research to integrate across ecological, social and economic dimensions and so better serve the management objective of avoiding fishery failure by nurturing and preserving the ecological, social and institutional attributes that enable it to renew and reorganize itself. (PDF contains 29 pages)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, labon- a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques 1,2, and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT microstructures, significantly increases the packing density of CNTs. This process enables directed transformation of vertical CNT microstructures into straight, inclined, and twisted shapes, which have robust mechanical properties exceeding those of typical microfabrication polymers. This in turn enables formation of nanocomposite CNT master molds by capillary-driven infiltration of polymers. The replica structures exhibit the anisotropic nanoscale texture of the aligned CNTs, and can have walls with sub-micron thickness and aspect ratios exceeding 50:1. Integration of CNT microstructures in fabrication offers further opportunity to exploit the electrical and thermal properties of CNTs, and diverse capabilities for chemical and biochemical functionalization 3. © 2012 Journal of Visualized Experiments.