644 resultados para CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
Resumo:
The proposal of this work is to evaluate the influence of the organic matter on the results of the analyses of the metals (Zn, Pb, Al, Cu, Cr, Fe, Cd e Ni) for Atomic Absorption Spectrometry (AAS), so much in the extraction stage as in the reading using for that the chemometrics. They were used for this study sample of bottom sediment collected in river Jundiaí in the vicinity of the city of Macaíba-RN, commercial humus and water of the station of treatment of sewer of UFRN. Through the analyses accomplished by EAA it was verified that the interference of the organic matter happens in the extraction stage and not in the reading. With relationship to the technique of X Ray Fluorescence Spectrometry (XRFS), the present work has as intended to evaluate the viability of this technique for quantitative analysis of trace metals (Cr, Ni, Cu, Zn, Rb, Sr and Pb) in having leached obtained starting from the extraction with acqua regia for an aqueous solution. The used samples constitute the fine fraction (<0.063 mm) of sediments of swamp of the river Jundiaí. The preparation of tablets pressed starting from the dry residue of those leached it allowed your analysis in the solid form. This preliminary study shows that, in the case of the digestion chemistry partially of the fine fractions of bottom sediments used for environmental studies, the technique of applied EFRX to the analysis of dry residues starting from having leached with acqua regia, compared her it analyzes of the leached with ICP-OES, it presents relative mistakes for Cu, Pb, Sr and Zn below 10%
Resumo:
This study aimed to apply, thermogravimetriy /derivative Thermogravimetriy (TG/DTG), differential scanning calorimetry (DSC), Differential Thermal Analysis (DTA), to conduct a comparative study on drug reference, generic and whose active principles are similar captopril hydrochlorothiazide, ampicillin, paracetamol, aspirin and mebendazole sold in local pharmacies. Samples of the active ingredients and dosage forms were also characterized by absorption infrared spectroscopy (IR), X-ray diffraction (XRD) and microscopy scanning electron (SEM). The TG / DTG curves showed a general similarity in the thermal behavior of the samples, but also showed the influence of excipients on the thermal stability. The DSC curve of the generic base hydrochlorothiazide showed no peak on the fusion of the drug due to interference of lactose as a diluent, which causes interaction with the active principle causing their degradation before the merger. The DSC curves of the drugs consisting of paracetamol showed reproducibility at the melting point of the active and the other thermal events. The DSC result of binary mixtures involving captopril / magnesium stearate and mebendazole/magnesium stearate showed possible interactions or incompatibilities evidenced by the displacement of the melting point of both drugs. The other mixtures showed no change. The infrared spectra presented were very similar, indicating the presence of functional groups characteristic of the constituents of the samples. The X-ray diffraction showed peaks indicative of crystalline structure of the active ingredients as well as some of the ingredients in the formulation of the drug and the micrographs indicate a general heterogeneity in the size distribution of particles in the samples
Resumo:
In this work, chitosan was used as a coating of pure perlite in order to increase the accessibility of the groups OH- e NH2+the adsorptionof ions Mn2+ e Zn2+.The characterization results of the expanded perlite classified as microporous and whose surface area 3,176 m2 g-1after the change resulted in 4,664 m2g-1.From the thermogravimetry(TG) it was found that the percentage of coating was34,3%.The infrared analysis can prove the presence of groups Si-OH, Si-O e Al-O-Siresulting from the perlite and C=O, NH2and OH characterization of chitosan. The experiments on experiments on the adsorption of Mn and Zn were performed in the concentration range of10 a 50 mgL-1and the adsorption capacity inpH 5,8 e 5,2 was 19,49 and 23,09 mgg-1to 25 oC,respectively.The adsorption data were best fitted to Langmuir adsorption model to Langmuir adsorption model for both metalionsisindicative of monolayer adsorption. The kinetics of adsorption were calculated from the equation of Lagergren fitting the model pseudo-second-order for all initial concentrations, suggesting that adsorption of ions Mn2+ and Zn2+ follows the kinetics of pseudo-second-order and whose constant Speedk2(g/mg.min) are 0,105 e 3,98 and capacity and maximum removal qe 4,326 e 3,348,respectively.In this study we used a square wave voltammetry cathodic stripping voltammetry to quantify the adsorbed ions, and the working electrode glassy carbon, reference electrode silver / silver chloride and a platinum auxiliary electrode. The attainment of the peaks corresponding to ions Mn2+ and Zn2+ was evaluated in and electrochemical cell with a capacity of 30 mL using a buffer system (Na2HPO4/NaH2PO4)at pH 4 and was adjusted with solutionsH3PO4 0,1molL-1and NaOH 0,1 molL-1and addition of the analyte has been a cathodic peak in- 0,873 Vand detection limit of2,55x10-6molL-1para Zn.The dough used for obtaining the adsorption isotherm was 150 mg and reached in 120 min time of equilibrium for both metal ions.The maximum adsorption for 120 min with Mn concentration 20 mgL-1 and Zn 10 mgL-1,was91, 09 e 94, 34%, respectively
Resumo:
In this work, electrochemical technology was used to treat synthetic wastewater containing Methyl Red (MR) and Blue Novacron (BN) by anodic oxidation using anodes platinum (Pt) and real samples of textile effluents using DDB anodes and platinum (Pt). The removal of color from the galvanostatic electrolysis of synthetic wastewater MR and BN, and the actual sample has been observed under different conditions (different current densities and temperature variation). The investigation of these parameters was performed in order to establish the best conditions for removal of color and chemical oxygen demand (BOD). According to the results obtained in this study, the electrochemical oxidation processes suitable for the degradation process of color and COD in wastewater containing such textile dyes, because the electrocatalytic properties of Pt and BDD anodes consumption energy during the electrochemical oxidation of synthetic solutions AN and MR and real sample, mainly depend on the operating parameters of operation, for example, the synthetic sample of MR, energy consumption rose from 42,00kWhm-3 in 40 mAcm-2 and 25 C to 17,50 kWhm-3 in 40mAcm-2 and 40 C, from the BN went 17,83 kWhm-3 in 40mAcm and 40°C to 14,04 kWhm- 3 in 40mAcm-2 and 40 C (data estimated by the volume of treated effluent). These results clearly indicate the applicability of electrochemical treatment for removing dyes from synthetic solutions and real industrial effluents
Resumo:
The present study utilized the thermogravimetry (TG) and optical emission spectroscopy with inductively coupled plasma - ICP / OES to determine the calcium content in tablets of carbonate, citrate and calcium lactate used in the treatment of osteoporosis. The samples were characterized by IR, SEM, TG / DTG, DTA, DSC and XRD. The thermal analysis evaluated the thermal stability and physical-chemical events and showed that the excipients influence the decomposition of active ingredients. The results of thermogravimetry indicated that the decomposition temperature of the active CaCO3 (T = 630.2 °C) is lower compared to that obtained in samples of the tablets (633.4 to 655.2 °C) except for sample AM 2 (Ti = 613.8 oC). In 500.0 °C in the samples of citrate and calcium lactate, as well as their respective active principles had already been formed calcium carbonate. The use of N2 atmosphere resulted in shifting the initial and final temperature related to the decomposition of CaCO3. In the DTA and DSC curves were observed endo and exothermic events for the samples of tablets and active ingredients studied. The infrared spectra identified the main functional groups in all samples of active ingredients, excipients and tablets studied, such as symmetric and asymmetric stretches of the groups OH, CH, C = O. Analysis by X-ray diffraction showed that all samples are crystalline and that the final residue showed peaks indicative of the presence of calcium hydroxide by the reaction of calcium oxide with moisture of the air. Although the samples AM 1, AM 2, AM 3 and AM 6 in their formulations have TiO2 and SiO2 peaks were not observed in X-ray diffractograms of these compounds. The results obtained by TGA to determine the calcium content of the drugs studied were satisfactory when compared with those obtained by ICP-OES. In the AM 1 tablet was obtained the content of 35.37% and 32.62% for TG by ICP-OES, at 6 AM a percentage of 17.77% and 16.82% and for AM 7 results obtained were 8.93% for both techniques, showing that the thermogravimetry can be used to determine the percentage of calcium in tablets. The technique offers speed, economy in the use of samples and procedures eliminating the use of acid reagents in the process of the sample and efficiency results.
Resumo:
In this work, the plant species Copernicia prunifera (Miller) H. E. Moore (carnauba), naturally occurring which prevails in the northeast region of Brazil was the subject of studies aiming its use as external coating of pipelines used in petroleum industry. The part of the plant worked were the leaves, also called straw, which were coated with resinous material. For this purpose, it was necessary to evaluate the effectiveness of the use of acrylic resins in the straw carnauba coating. The properties of the untreated carnauba straw and chemically treated with sodium hydroxide, hexane and carbon tetrachloride were investigated by ATRFTIR, SEM and thermal analysis. The first two techniques showed that treatment with solvents has caused major changes in the straw surface, while the thermal analysis indicated that the sodium hydroxide caused variations in thermal stability of straw constituents. Water absorption measurements showed that treatments have accelerated the absorption process and the reduction of contact angle values for treated samples with solvents indicated higher hidrophilicity of straw. The tensile tests showed lower values of elastic modulus and tensile strength for treated samples. Furthermore, coatings using pure commercial resins A and B as well as the formulations with clay were applied in straw and they were examined once again through thermal analysis, water absorption measurements, contact angle and mechanical tests. To analyze the effect of heat ageing, samples were subjected to tensile tests again in order to assess its resistance. The results showed that the resins/clay formulations increased thermal stability of straw, they promoted a good impermeabilization and caused significant decrease in the values of elastic modulus and tensile strength. Evaluating the ageing effect on the mechanical properties, it has been showed good recovery to the coated straw with the formulations A 60 and A 80% in modulus and tensile strength values and elongation at break values have remained very close. It is thus concluded that the carnauba straw can be used as a coating of pipelines with significant cost savings, since there is no need for pretreatment for its use and shows itself as a viable biotechnology alternative, contributing to the quality of coatings material and environment preservation.
Resumo:
Gels consist of soft materials with vast use in several activities, such as in pharmaceutical industry, food science, and coatings/textile applications. In order to obtain these materials, the process of gelification, that can be physical (based on physical interactions) and/or chemical (based on covalent crosslinking), has to be carried out. In this work we used dynamic light scattering (DLS) and rheometry to monitor the covalent gelification of chitosan solutions by glutaraldehyde. Intensity correlation function (ICF) data was obtained from DLS and the exponential stretched Kohrausch-William-Watts function (KWW) was fitted to them. The parameters of the KWW equation, β, Γ and C were evaluated. These methods were effective in clarifying the process of sol-gel transition, with the emergence of non-ergodicity, and determining the range of gelation observed in about 10-20 minutes. The dependence between apparent viscosity on reaction time was used to support the discussion proposed.
Resumo:
In this work were synthesized and studied the spectroscopic and electrochemical characteristics of the coordination compounds trans-[Co (cyclam)Cl2]Cl, trans- Na[Co(cyclam)(tios)2], trans-[Co(en)2Cl2]Cl and trans-Na[Co(en)2(tios)2], where tios = thiosulfate and en = ethylenediamine. The compounds were characterized by: Elemental Analysis (CHN), Absorption Spectroscopy in the Infrared (IR), Uv-Visible Absorption Spectroscopy, Luminescence Spectroscopy and Electrochemistry (cyclic voltammetry). Elemental Analysis (CHN) suggests the following structures for the complex: trans- [Co(cyclam)Cl2]Cl.6H2O and trans-Na[Co(cyclam)(tios)2].7H2O. The electrochemical analysis, when compared the cathodic potential (Ec) processes of the complexes trans- [Co(cyclam)Cl2]Cl and trans-[Co(en)2Cl2]Cl, indicated a more negative value (-655 mV) for the second complex, suggesting a greater electron donation to the metal center in this complex which can be attributed to a greater proximity of the nitrogen atoms of ethylenediamine in relation to metal-nitrogen cyclam. Due to the effect of setting macrocyclic ring to the metal center, the metal-nitrogen bound in the cyclam are not as close as the ethylenediamine, this fact became these two ligands different. Similar behavior is also observed for complexes in which the chlorides are replaced by thiosulfate ligand, trans-Na[Co(en)2(tios)2] (-640 mV) and trans-Na[Co(cyclam)(tios)2] (-376 mV). In absorption spectroscopy in the UV-visible, there is the band of charge transfer LMCT (ligand p d* the metal) in the trans-Na[Co(cyclam)(tios)2] (350 nm, p tios d* Co3+) and in the trans-Na[Co(en)2(tios)2] (333 nm, p tios d* Co3+), that present higher wavelength compared to complex precursor trans- [Co(cyclam)Cl2]Cl (318 nm, pCl d* Co3+), indicating a facility of electron density transfer for the metal in the complex with the thiosulfate ligand. The infrared analysis showed the coordination of the thiosulfate ligand to the metal by bands in the region (620-635 cm-1), features that prove the monodentate coordination via the sulfur atom. The νN-H bands of the complexes with ethylenediamine are (3283 and 3267 cm-1) and the complex with cyclam bands are (3213 and 3133 cm-1). The luminescence spectrum of the trans-Na[Co(cyclam)(tios)2] present charge transfer band at 397 nm and bands dd at 438, 450, 467, 481 and 492 nm.
Resumo:
Chitosan nanoparticles have been used in several systems for the controlled release of drugs. The aim of this study was to obtain and characterize chitosan nanoparticles prepared by the method of coacervation / precipitation using sodium sulfate at different concentrations as the crosslinking agent. The characterization was done using zeta potential and small angle Xray scattering, SAXS. The dispersions of chitosan were obtained at pH 1 and pH = 3. The results of zeta potential at pH = 1 ranged from +64.8 to +29.27 mV and for pH = 3 they varied from +72.4 to +23.48 mV, indicating that the chain of chitosan is positively charged in acidic pH and the behavior of nanoparticles in terms of surface charge was independent of pH. However, the results indicated a dependence of particle size in relation to pH. This difference in behavior was explained by the influence of enthalpic and entropic components
Resumo:
Were synthesized ferrites of NiZn on systems Ni0,5Zn0,5Fe2O4, the precursors citrate method. The decomposition of the precursors was studied by thermogravimetric analysis and spectroscopy in the infrared region, the temperature of 350°C/3h. The evolution of the phases formed after calcinations at 350ºC/3h, 600, 1000 and 1100ºC/2h was accompanied by X-ray diffraction using the Rietveld refinement method for better identification os structures formed. Was observed for samples calcined at different temperatures increased crystallinity with increasing calcination temperature, being observed for the samples calcined at 900 and 1100 º C/2h was the precipitation of a secondary phase, the phase hematite. The ferrocarbonila of industrial origin was analyzed by X-ray diffraction and Rietveld for the identification of its structure. The carbonyl iron was added NiZn ferrite calcined at 350ºC/3h, 600, 900, 1000 and 1100ºC/2h to the formation of hybrid mixtures. They were then analyzed by Xray diffraction and Rietveld. The NiZn ferrite and ferrocarbonila as well as the hybrid mixtures were subjected to analysis of scanning electron microscopy, magnetic measurements and reflectivity. The magnetic measurements indicated that the ferrite, the ferrocarbonila, as well as hybrid mixtures showed characteristics of soft magnetic material. The addition of ferrocarbonila in all compositions showed an increase in the results of magnetic measurements and reflectivity. Best result was observed in the increase of the magnetization for the hybrid mixture of Ferrocarbonila / ferrite of NiZn calcined at 600ºC/2h. The mixture Ferrocarbonila / ferrite calcined 1000°C/2h presented better absorption of electromagnetic radiation in the microwave
Resumo:
In this work calibration models were constructed to determine the content of total lipids and moisture in powdered milk samples. For this, used the near-infrared spectroscopy by diffuse reflectance, combined with multivariate calibration. Initially, the spectral data were submitted to correction of multiplicative light scattering (MSC) and Savitzsky-Golay smoothing. Then, the samples were divided into subgroups by application of hierarchical clustering analysis of the classes (HCA) and Ward Linkage criterion. Thus, it became possible to build regression models by partial least squares (PLS) that allowed the calibration and prediction of the content total lipid and moisture, based on the values obtained by the reference methods of Soxhlet and 105 ° C, respectively . Therefore, conclude that the NIR had a good performance for the quantification of samples of powdered milk, mainly by minimizing the analysis time, not destruction of the samples and not waste. Prediction models for determination of total lipids correlated (R) of 0.9955, RMSEP of 0.8952, therefore the average error between the Soxhlet and NIR was ± 0.70%, while the model prediction to content moisture correlated (R) of 0.9184, RMSEP, 0.3778 and error of ± 0.76%
Resumo:
The municipality of Guamaré is located on the north coast of RN, Salineira zone, with a land area of 259 km2 and a population of approximately 12,500 inhabitants (IBGE, 2010). Presents strong morphological instability caused mainly by the influence of human activities in the region. The present study aims to assess the existing levels of salts in the springs of the region, by evaluating the electrical conductivity, pH, salinity, chlorides, hardness, calcium, magnesium and heavy metals in the water. The collection and analysis methods adopted in the survey are based on APHA (2005). The electrical conductivity, salinity and chloride behaved similarly throughout the study. Some points suffered the direct effect of the salt ponds and others. Given the existence of a drainage ditch between the saline and monitored region, there was little change in the environment, including the native vegetation. The opposite situation occurred in farms where the region is fully committed local vegetation and water holes and wells used in the past for domestic use are practically disabled (high salt content). In Rio Miassaba formation of an estuary is reversed, with the farther out from the sea showing higher salt concentracions, which may be associated with the discharge of organic matter and natural evaporation rate. In periods of no rainfall had a few points higher than the levels of salts found in seawater and may be associated with high evaporation in the region. Detected a positive factor is the high resilience and reducing salt, after periods of rainfall incidence
Resumo:
In this work a biodegradable composite using the carnauba straw s powder as reinforcement on chitosan matrix polymeric were manufactured. Firstly, were carried out the chemistry characterization of the carnauba straw s powder before and after treatments with NaOH and hexane. Goering and Van Soest method (1970), flotation test, moisture absorption, FTIR, TG/DTG, DSC and SEM have also being carried out. Composites were developed with variations in granulometry and in powder concentrations. They were characterized by TG/DTG, SEM and mechanicals properties. The results of chemical composition showed that the carnauba straw s powder is composed of 41% of cellulose; 28,9% of hemicellulose and 14% of lignin.The flotation test have indicated that the chemical treatment with NaOH decreased the powder s hidrophilicity.The thermal analysis showed increased of thermal stability of material after treatments. The results of FTIR and SEM revealed the removal of soluble materials from the powder (hemicelluloses and lignin), the material became rougher and clean. The composites obtained showed that the mechanicals properties of the composites were decreased in respect at chitosan films, and the composites with the powder at 150 Mesh showed less variation in the modulus values. The speed test of 10 mm/min showed the better reproducibility of the results and is in agreement to the standard ASTM D638. The SEM analysis of fracture showed the low adhesion between the fiber/matrix. The increase of volume of powder in the composite caused a decrease in values of stress and strain for the samples with untreated powder and treated with hexane. The composite with 50% of the powder s treated in NaOH didn t have significant variation in the values of stress and strain as compared with the composites with 10% of the powder, showing that the increase in the volume of fiber didn t affect the stress and strain of the composite. Thereby, it is concluded that the manufacture of polymeric composites of chitosan using carnauba straw s powder can be done, without need for pre-treatment of reinforcement, become the couple of carnauba straw s powder-chitosan a good alternative for biodegradable composites
Resumo:
Volatile Organic Compounds are pollutants coming mainly from activities that use fossil fuels. Within this class are the BTEX (benzene, toluene, ethylbenzene and xylenes) compounds that are considered hazardous. Among the various existing techniques for degradation of pollutants, there is advanced oxidation using H2O2 generating hidoxil radical ( OH). In this work, the mesoporous material of MCM-41 was synthesized by hydrothermal method and then was used as support, the impregnation of titanium by the method of synthesis with excess solvent to obtain the catalyst Ti-MCM-41. The catalyst was used in the reaction catalyzed removal of BTEX in water using H2O2 as oxidant. The materials were characterized by: XRD, TG/DTG, FTIR, nitrogen adsorption-desorption and FRX-EDX, in order to verify the method of impregnation of the mesoporous titanium support was effective. Catalytic tests were carried out in reactors of 20 mL containing BTEX (100.0 μg/L), H2O2 (2.0 M) and Ti-MCM-41 (2.0 g/L) in acid medium. The reaction occurred for 5 h at 60 °C and analysis were performed by gas chromatography with photoionization detector and static headspace sampler. The characterizations have proven the effectiveness of the synthesis method used and the incorporation of titanium lt in the support. The catalytic tests showed satisfactory results with conversion of more than 95 % for the studied compounds, where the catalyst 48% Ti-MCM-41 showed a higher removal efficiency of the compounds under study
Resumo:
Hybrid systems formed from polymers and transition metals have now their physical and chemical properties extensively investigated for use in electronic devices. In this work, Titanium Dioxide (TiO2) from the precursor of titanium tetrabutoxide and the composite system Poly(Ethylene Glycol)-Titanium Dioxide (TiO2-PEG) were synthesized by sol-gel method. The PEG as acquired and TiO2 and composites powders were analyzed by X-Ray Diffraction (XRD), Spectroscopy in the Infrared region with Fourier transform (IRFT), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and Electrochemical Impedance Spectroscopy (EIS). In the XRD analysis were observed in the TiO2 crystal faces of one of its polymorphs - anatase phase, crystal planes in Poly (Ethylene Glycol) with considerable intensity and in the composite systems the mixture of crystal faces of their precursors isolated and reduction of crystallinity. The TG / DTG suggested increasing the thermal instability of PEG in the composite powders as TiO2 is incorporated into the system. Spectral analysis presented in the infrared overlapping bands for the polymer and metal oxide, reducing the intensity of symmetric stretching of ligand groups in the main chain polymer and angular deformations; were observed using SEM micrographs of the morphological changes suffered by composite systems with the variation of the oxide concentration. Analyses by impedance spectroscopy indicated that the increased conductivity in composite occurs in line with the addition of the metal oxide concentration in the composite system