899 resultados para Bayesian hierarchical model
Resumo:
This paper addresses the investment decisions considering the presence of financial constraints of 373 large Brazilian firms from 1997 to 2004, using panel data. A Bayesian econometric model was used considering ridge regression for multicollinearity problems among the variables in the model. Prior distributions are assumed for the parameters, classifying the model into random or fixed effects. We used a Bayesian approach to estimate the parameters, considering normal and Student t distributions for the error and assumed that the initial values for the lagged dependent variable are not fixed, but generated by a random process. The recursive predictive density criterion was used for model comparisons. Twenty models were tested and the results indicated that multicollinearity does influence the value of the estimated parameters. Controlling for capital intensity, financial constraints are found to be more important for capital-intensive firms, probably due to their lower profitability indexes, higher fixed costs and higher degree of property diversification.
Resumo:
RESUMO: A estrutura demográfica portuguesa é marcada por baixas taxas de natalidade e mortalidade, onde a população idosa representa uma fatia cada vez mais representativa, fruto de uma maior longevidade. A incidência do cancro, na sua generalidade, é maior precisamente nessa classe etária. A par de outras doenças igualmente lesivas (e.g. cardiovasculares, degenerativas) cuja incidência aumenta com a idade, o cancro merece relevo. Estudos epidemiológicos apresentam o cancro como líder mundial na mortalidade. Em países desenvolvidos, o seu peso representa 25% do número total de óbitos, percentagem essa que mais que duplica noutros países. A obesidade, a baixa ingestão de frutas e vegetais, o sedentarismo, o consumo de tabaco e a ingestão de álcool, configuram-se como cinco dos fatores de risco presentes em 30% das mortes diagnosticadas por cancro. A nível mundial e, em particular no Sul de Portugal, os cancros do estômago, recto e cólon apresentam elevadas taxas de incidência e de mortalidade. Do ponto de vista estritamente económico, o cancro é a doença que mais recursos consome enquanto que do ponto de vista físico e psicológico é uma doença que não limita o seu raio de ação ao doente. O cancro é, portanto, uma doença sempre atual e cada vez mais presente, pois reflete os hábitos e o ambiente de uma sociedade, não obstante as características intrínsecas a cada indivíduo. A adoção de metodologia estatística aplicada à modelação de dados oncológicos é, sobretudo, valiosa e pertinente quando a informação é oriunda de Registos de Cancro de Base Populacional (RCBP). A pertinência é justificada pelo fato destes registos permitirem aferir numa população específica, o risco desta sofrer e/ou vir a sofrer de uma dada neoplasia. O peso que as neoplasias do estômago, cólon e recto assumem foi um dos elementos que motivou o presente estudo que tem por objetivo analisar tendências, projeções, sobrevivências relativas e a distribuição espacial destas neoplasias. Foram considerados neste estudo todos os casos diagnosticados no período 1998-2006, pelo RCBP da região sul de Portugal (ROR-Sul). O estudo descritivo inicial das taxas de incidência e da tendência em cada uma das referidas neoplasias teve como base uma única variável temporal - o ano de diagnóstico - também designada por período. Todavia, uma metodologia que contemple apenas uma única variável temporal é limitativa. No cancro, para além do período, a idade à data do diagnóstico e a coorte de nascimento, são variáveis temporais que poderão prestar um contributo adicional na caracterização das taxas de incidência. A relevância assumida por estas variáveis temporais justificou a sua inclusão numaclasse de modelos designada por modelos Idade-Período-Coorte (Age-Period-Cohort models - APC), utilizada na modelação das taxas de incidência para as neoplasias em estudo. Os referidos modelos permitem ultrapassar o problema de relações não lineares e/ou de mudanças súbitas na tendência linear das taxas. Nos modelos APC foram consideradas a abordagem clássica e a abordagem com recurso a funções suavizadoras. A modelação das taxas foi estratificada por sexo. Foram ainda estudados os respectivos submodelos (apenas com uma ou duas variáveis temporais). Conhecido o comportamento das taxas de incidência, uma questão subsequente prende-se com a sua projeção em períodos futuros. Porém, o efeito de mudanças estruturais na população, ao qual Portugal não é alheio, altera substancialmente o número esperado de casos futuros com cancro. Estimativas da incidência de cancro a nível mundial obtidas a partir de projeções demográficas apontam para um aumento de 25% dos casos de cancro nas próximas duas décadas. Embora a projeção da incidência esteja associada a alguma incerteza, as projeções auxiliam no planeamento de políticas de saúde para a afetação de recursos e permitem a avaliação de cenários e de intervenções que tenham como objetivo a redução do impacto do cancro. O desconhecimento de projeções da taxa de incidência destas neoplasias na área abrangida pelo ROR-Sul, levou à utilização de modelos de projeção que diferem entre si quanto à sua estrutura, linearidade (ou não) dos seus coeficientes e comportamento das taxas na série histórica de dados (e.g. crescente, decrescente ou estável). Os referidos modelos pautaram-se por duas abordagens: (i)modelos lineares no que concerne ao tempo e (ii) extrapolação de efeitos temporais identificados pelos modelos APC para períodos futuros. Foi feita a projeção das taxas de incidência para os anos de 2007 a 2010 tendo em conta o género, idade e neoplasia. É ainda apresentada uma estimativa do impacto económico destas neoplasias no período de projeção. Uma questão pertinente e habitual no contexto clínico e a que o presente estudo pretende dar resposta, reside em saber qual a contribuição da neoplasia em si para a sobrevivência do doente. Nesse sentido, a mortalidade por causa específica é habitualmente utilizada para estimar a mortalidade atribuível apenas ao cancro em estudo. Porém, existem muitas situações em que a causa de morte é desconhecida e, mesmo que esta informação esteja disponível através dos certificados de óbito, não é fácil distinguir os casos em que a principal causa de morte é devida ao cancro. A sobrevivência relativa surge como uma medida objetiva que não necessita do conhecimento da causa específica da morte para o seu cálculo e dar-nos-á uma estimativa da probabilidade de sobrevivência caso o cancro em análise, num cenário hipotético, seja a única causa de morte. Desconhecida a principal causa de morte nos casos diagnosticados com cancro no registo ROR-Sul, foi determinada a sobrevivência relativa para cada uma das neoplasias em estudo, para um período de follow-up de 5 anos, tendo em conta o sexo, a idade e cada uma das regiões que constituem o registo. Foi adotada uma análise por período e as abordagens convencional e por modelos. No epílogo deste estudo, é analisada a influência da variabilidade espaço-temporal nas taxas de incidência. O longo período de latência das doenças oncológicas, a dificuldade em identificar mudanças súbitas no comportamento das taxas, populações com dimensão e riscos reduzidos, são alguns dos elementos que dificultam a análise da variação temporal das taxas. Nalguns casos, estas variações podem ser reflexo de flutuações aleatórias. O efeito da componente temporal aferida pelos modelos APC dá-nos um retrato incompleto da incidência do cancro. A etiologia desta doença, quando conhecida, está associada com alguma frequência a fatores de risco tais como condições socioeconómicas, hábitos alimentares e estilo de vida, atividade profissional, localização geográfica e componente genética. O “contributo”, dos fatores de risco é, por vezes, determinante e não deve ser ignorado. Surge, assim, a necessidade em complementar o estudo temporal das taxas com uma abordagem de cariz espacial. Assim, procurar-se-á aferir se as variações nas taxas de incidência observadas entre os concelhos inseridos na área do registo ROR-Sul poderiam ser explicadas quer pela variabilidade temporal e geográfica quer por fatores socioeconómicos ou, ainda, pelos desiguais estilos de vida. Foram utilizados os Modelos Bayesianos Hierárquicos Espaço-Temporais com o objetivo de identificar tendências espaço-temporais nas taxas de incidência bem como quantificar alguns fatores de risco ajustados à influência simultânea da região e do tempo. Os resultados obtidos pela implementação de todas estas metodologias considera-se ser uma mais valia para o conhecimento destas neoplasias em Portugal.------------ABSTRACT: mortality rates, with the elderly being an increasingly representative sector of the population, mainly due to greater longevity. The incidence of cancer, in general, is greater precisely in that age group. Alongside with other equally damaging diseases (e.g. cardiovascular,degenerative), whose incidence rates increases with age, cancer is of special note. In epidemiological studies, cancer is the global leader in mortality. In developed countries its weight represents 25% of the total number of deaths, with this percentage being doubled in other countries. Obesity, a reduce consumption of fruit and vegetables, physical inactivity, smoking and alcohol consumption, are the five risk factors present in 30% of deaths due to cancer. Globally, and in particular in the South of Portugal, the stomach, rectum and colon cancer have high incidence and mortality rates. From a strictly economic perspective, cancer is the disease that consumes more resources, while from a physical and psychological point of view, it is a disease that is not limited to the patient. Cancer is therefore na up to date disease and one of increased importance, since it reflects the habits and the environment of a society, regardless the intrinsic characteristics of each individual. The adoption of statistical methodology applied to cancer data modelling is especially valuable and relevant when the information comes from population-based cancer registries (PBCR). In such cases, these registries allow for the assessment of the risk and the suffering associated to a given neoplasm in a specific population. The weight that stomach, colon and rectum cancers assume in Portugal was one of the motivations of the present study, that focus on analyzing trends, projections, relative survival and spatial distribution of these neoplasms. The data considered in this study, are all cases diagnosed between 1998 and 2006, by the PBCR of Portugal, ROR-Sul.Only year of diagnosis, also called period, was the only time variable considered in the initial descriptive analysis of the incidence rates and trends for each of the three neoplasms considered. However, a methodology that only considers one single time variable will probably fall short on the conclusions that could be drawn from the data under study. In cancer, apart from the variable period, the age at diagnosis and the birth cohort are also temporal variables and may provide an additional contribution to the characterization of the incidence. The relevance assumed by these temporal variables justified its inclusion in a class of models called Age-Period-Cohort models (APC). This class of models was used for the analysis of the incidence rates of the three cancers under study. APC models allow to model nonlinearity and/or sudden changes in linear relationships of rate trends. Two approaches of APC models were considered: the classical and the one using smoothing functions. The models were stratified by gender and, when justified, further studies explored other sub-models where only one or two temporal variables were considered. After the analysis of the incidence rates, a subsequent goal is related to their projections in future periods. Although the effect of structural changes in the population, of which Portugal is not oblivious, may substantially change the expected number of future cancer cases, the results of these projections could help planning health policies with the proper allocation of resources, allowing for the evaluation of scenarios and interventions that aim to reduce the impact of cancer in a population. Worth noting that cancer incidence worldwide obtained from demographic projections point out to an increase of 25% of cancer cases in the next two decades. The lack of projections of incidence rates of the three cancers under study in the area covered by ROR-Sul, led us to use a variety of forecasting models that differ in the nature and structure. For example, linearity or nonlinearity in their coefficients and the trend of the incidence rates in historical data series (e.g. increasing, decreasing or stable).The models followed two approaches: (i) linear models regarding time and (ii) extrapolation of temporal effects identified by the APC models for future periods. The study provide incidence rates projections and the numbers of newly diagnosed cases for the year, 2007 to 2010, taking into account gender, age and the type of cancer. In addition, an estimate of the economic impact of these neoplasms is presented for the projection period considered. This research also try to address a relevant and common clinical question in these type of studies, regarding the contribution of the type of cancer to the patient survival. In such studies, the primary cause of death is commonly used to estimate the mortality specifically due to the cancer. However, there are many situations in which the cause of death is unknown, or, even if this information is available through the death certificates, it is not easy to distinguish the cases where the primary cause of death is the cancer. With this in mind, the relative survival is an alternative measure that does not need the knowledge of the specific cause of death to be calculated. This estimate will represent the survival probability in the hypothetical scenario of a certain cancer be the only cause of death. For the patients with unknown cause of death that were diagnosed with cancer in the ROR-Sul, the relative survival was calculated for each of the cancers under study, for a follow-up period of 5 years, considering gender, age and each one of the regions that are part the registry. A period analysis was undertaken, considering both the conventional and the model approaches. In final part of this study, we analyzed the influence of space-time variability in the incidence rates. The long latency period of oncologic diseases, the difficulty in identifying subtle changes in the rates behavior, populations of reduced size and low risk are some of the elements that can be a challenge in the analysis of temporal variations in rates, that, in some cases, can reflect simple random fluctuations. The effect of the temporal component measured by the APC models gives an incomplete picture of the cancer incidence. The etiology of this disease, when known, is frequently associated to risk factors such as socioeconomic conditions, eating habits and lifestyle, occupation, geographic location and genetic component. The "contribution"of such risk factors is sometimes decisive in the evolution of the disease and should not be ignored. Therefore, there was the need to consider an additional approach in this study, one of spatial nature, addressing the fact that changes in incidence rates observed in the ROR-Sul area, could be explained either by temporal and geographical variability or by unequal socio-economic or lifestyle factors. Thus, Bayesian hierarchical space-time models were used with the purpose of identifying space-time trends in incidence rates together with the the analysis of the effect of the risk factors considered in the study. The results obtained and the implementation of all these methodologies are considered to be an added value to the knowledge of these neoplasms in Portugal.
Resumo:
INTRODUCTION: The purpose of this ecological study was to evaluate the urban spatial and temporal distribution of tuberculosis (TB) in Ribeirão Preto, State of São Paulo, southeast Brazil, between 2006 and 2009 and to evaluate its relationship with factors of social vulnerability such as income and education level. METHODS: We evaluated data from TBWeb, an electronic notification system for TB cases. Measures of social vulnerability were obtained from the SEADE Foundation, and information about the number of inhabitants, education and income of the households were obtained from Brazilian Institute of Geography and Statistics. Statistical analyses were conducted by a Bayesian regression model assuming a Poisson distribution for the observed new cases of TB in each area. A conditional autoregressive structure was used for the spatial covariance structure. RESULTS: The Bayesian model confirmed the spatial heterogeneity of TB distribution in Ribeirão Preto, identifying areas with elevated risk and the effects of social vulnerability on the disease. We demonstrated that the rate of TB was correlated with the measures of income, education and social vulnerability. However, we observed areas with low vulnerability and high education and income, but with high estimated TB rates. CONCLUSIONS: The study identified areas with different risks for TB, given that the public health system deals with the characteristics of each region individually and prioritizes those that present a higher propensity to risk of TB. Complex relationships may exist between TB incidence and a wide range of environmental and intrinsic factors, which need to be studied in future research.
Resumo:
This paper develops methods for Stochastic Search Variable Selection (currently popular with regression and Vector Autoregressive models) for Vector Error Correction models where there are many possible restrictions on the cointegration space. We show how this allows the researcher to begin with a single unrestricted model and either do model selection or model averaging in an automatic and computationally efficient manner. We apply our methods to a large UK macroeconomic model.
Resumo:
This paper investigates global term structure dynamics using a Bayesian hierarchical factor model augmented with macroeconomic fundamentals. More than half of the variation in bond yields of seven advanced economies is due to global co-movement, which is mainly attributed to shocks to non-fundamentals. Global fundamentals, especially global inflation, affect yields through a ‘policy channel’ and a ‘risk compensation channel’, but the effects through two channels are offset. This evidence explains the unsatisfactory performance of fundamentals-driven term structure models. Our approach delineates asymmetric spillovers in global bond markets connected to diverging monetary policies. The proposed model is robust as identified factors has significant explanatory power of excess returns. The finding that global inflation uncertainty is useful in explaining realized excess returns does not rule out regime changing as a source of non-fundamental fluctuations.
Resumo:
Compositional random vectors are fundamental tools in the Bayesian analysis of categorical data.Many of the issues that are discussed with reference to the statistical analysis of compositionaldata have a natural counterpart in the construction of a Bayesian statistical model for categoricaldata.This note builds on the idea of cross-fertilization of the two areas recommended by Aitchison (1986)in his seminal book on compositional data. Particular emphasis is put on the problem of whatparameterization to use
Resumo:
Analysis of variance is commonly used in morphometry in order to ascertain differences in parameters between several populations. Failure to detect significant differences between populations (type II error) may be due to suboptimal sampling and lead to erroneous conclusions; the concept of statistical power allows one to avoid such failures by means of an adequate sampling. Several examples are given in the morphometry of the nervous system, showing the use of the power of a hierarchical analysis of variance test for the choice of appropriate sample and subsample sizes. In the first case chosen, neuronal densities in the human visual cortex, we find the number of observations to be of little effect. For dendritic spine densities in the visual cortex of mice and humans, the effect is somewhat larger. A substantial effect is shown in our last example, dendritic segmental lengths in monkey lateral geniculate nucleus. It is in the nature of the hierarchical model that sample size is always more important than subsample size. The relative weight to be attributed to subsample size thus depends on the relative magnitude of the between observations variance compared to the between individuals variance.
Resumo:
A recent method used to optimize biased neural networks with low levels of activity is applied to a hierarchical model. As a consequence, the performance of the system is strongly enhanced. The steps to achieve optimization are analyzed in detail.
Resumo:
OBJECTIVE: Hierarchical modeling has been proposed as a solution to the multiple exposure problem. We estimate associations between metabolic syndrome and different components of antiretroviral therapy using both conventional and hierarchical models. STUDY DESIGN AND SETTING: We use discrete time survival analysis to estimate the association between metabolic syndrome and cumulative exposure to 16 antiretrovirals from four drug classes. We fit a hierarchical model where the drug class provides a prior model of the association between metabolic syndrome and exposure to each antiretroviral. RESULTS: One thousand two hundred and eighteen patients were followed for a median of 27 months, with 242 cases of metabolic syndrome (20%) at a rate of 7.5 cases per 100 patient years. Metabolic syndrome was more likely to develop in patients exposed to stavudine, but was less likely to develop in those exposed to atazanavir. The estimate for exposure to atazanavir increased from hazard ratio of 0.06 per 6 months' use in the conventional model to 0.37 in the hierarchical model (or from 0.57 to 0.81 when using spline-based covariate adjustment). CONCLUSION: These results are consistent with trials that show the disadvantage of stavudine and advantage of atazanavir relative to other drugs in their respective classes. The hierarchical model gave more plausible results than the equivalent conventional model.
Resumo:
We presented an integrated hierarchical model of psychopathology that more accurately captures empirical patterns of comorbidity between clinical syndromes and personality disorders.In order to verify the structural validity of the model proposed, this study aimed to analyze the convergence between the Restructured Clinical (RC) scales and Personality scales (PSY-5) of the MMPI-2-RF and the Clinical Syndrome and Personality Disorder scales of the MCMI-III.The MMPI-2-RF and MCMI-III were administered to a clinical sample of 377 outpatients (167 men and 210 women).The structural hypothesiswas assessed by using a Confirmatory Factor Analytic design with four common superordinate factors. An independent-cluster-basis solution was proposed based on maximum likelihood estimation and the application of several fit indices.The fit of the proposed model can be considered as good and more so if we take into account its complexity.
Resumo:
Advances in flow cytometry and other single-cell technologies have enabled high-dimensional, high-throughput measurements of individual cells as well as the interrogation of cell population heterogeneity. However, in many instances, computational tools to analyze the wealth of data generated by these technologies are lacking. Here, we present a computational framework for unbiased combinatorial polyfunctionality analysis of antigen-specific T-cell subsets (COMPASS). COMPASS uses a Bayesian hierarchical framework to model all observed cell subsets and select those most likely to have antigen-specific responses. Cell-subset responses are quantified by posterior probabilities, and human subject-level responses are quantified by two summary statistics that describe the quality of an individual's polyfunctional response and can be correlated directly with clinical outcome. Using three clinical data sets of cytokine production, we demonstrate how COMPASS improves characterization of antigen-specific T cells and reveals cellular 'correlates of protection/immunity' in the RV144 HIV vaccine efficacy trial that are missed by other methods. COMPASS is available as open-source software.
Resumo:
Les logiciels utilisés sont Splus et R.
Approximation de la distribution a posteriori d'un modèle Gamma-Poisson hiérarchique à effets mixtes
Resumo:
La méthode que nous présentons pour modéliser des données dites de "comptage" ou données de Poisson est basée sur la procédure nommée Modélisation multi-niveau et interactive de la régression de Poisson (PRIMM) développée par Christiansen et Morris (1997). Dans la méthode PRIMM, la régression de Poisson ne comprend que des effets fixes tandis que notre modèle intègre en plus des effets aléatoires. De même que Christiansen et Morris (1997), le modèle étudié consiste à faire de l'inférence basée sur des approximations analytiques des distributions a posteriori des paramètres, évitant ainsi d'utiliser des méthodes computationnelles comme les méthodes de Monte Carlo par chaînes de Markov (MCMC). Les approximations sont basées sur la méthode de Laplace et la théorie asymptotique liée à l'approximation normale pour les lois a posteriori. L'estimation des paramètres de la régression de Poisson est faite par la maximisation de leur densité a posteriori via l'algorithme de Newton-Raphson. Cette étude détermine également les deux premiers moments a posteriori des paramètres de la loi de Poisson dont la distribution a posteriori de chacun d'eux est approximativement une loi gamma. Des applications sur deux exemples de données ont permis de vérifier que ce modèle peut être considéré dans une certaine mesure comme une généralisation de la méthode PRIMM. En effet, le modèle s'applique aussi bien aux données de Poisson non stratifiées qu'aux données stratifiées; et dans ce dernier cas, il comporte non seulement des effets fixes mais aussi des effets aléatoires liés aux strates. Enfin, le modèle est appliqué aux données relatives à plusieurs types d'effets indésirables observés chez les participants d'un essai clinique impliquant un vaccin quadrivalent contre la rougeole, les oreillons, la rub\'eole et la varicelle. La régression de Poisson comprend l'effet fixe correspondant à la variable traitement/contrôle, ainsi que des effets aléatoires liés aux systèmes biologiques du corps humain auxquels sont attribués les effets indésirables considérés.
Utilisation de splines monotones afin de condenser des tables de mortalité dans un contexte bayésien
Resumo:
Dans ce mémoire, nous cherchons à modéliser des tables à deux entrées monotones en lignes et/ou en colonnes, pour une éventuelle application sur les tables de mortalité. Nous adoptons une approche bayésienne non paramétrique et représentons la forme fonctionnelle des données par splines bidimensionnelles. L’objectif consiste à condenser une table de mortalité, c’est-à-dire de réduire l’espace d’entreposage de la table en minimisant la perte d’information. De même, nous désirons étudier le temps nécessaire pour reconstituer la table. L’approximation doit conserver les mêmes propriétés que la table de référence, en particulier la monotonie des données. Nous travaillons avec une base de fonctions splines monotones afin d’imposer plus facilement la monotonie au modèle. En effet, la structure flexible des splines et leurs dérivées faciles à manipuler favorisent l’imposition de contraintes sur le modèle désiré. Après un rappel sur la modélisation unidimensionnelle de fonctions monotones, nous généralisons l’approche au cas bidimensionnel. Nous décrivons l’intégration des contraintes de monotonie dans le modèle a priori sous l’approche hiérarchique bayésienne. Ensuite, nous indiquons comment obtenir un estimateur a posteriori à l’aide des méthodes de Monte Carlo par chaînes de Markov. Finalement, nous étudions le comportement de notre estimateur en modélisant une table de la loi normale ainsi qu’une table t de distribution de Student. L’estimation de nos données d’intérêt, soit la table de mortalité, s’ensuit afin d’évaluer l’amélioration de leur accessibilité.
Resumo:
Depuis quelques années, l'évolution moléculaire cherche à caractériser les variations et l'intensité de la sélection grâce au rapport entre taux de substitution synonyme et taux de substitution non-synonyme (dN/dS). Cette mesure, dN/dS, a permis d'étudier l'histoire de la variation de l'intensité de la sélection au cours du temps ou de détecter des épisodes de la sélection positive. Les liens entre sélection et variation de taille efficace interfèrent cependant dans ces mesures. Les méthodes comparatives, quant a elle, permettent de mesurer les corrélations entre caractères quantitatifs le long d'une phylogénie. Elles sont également utilisées pour tester des hypothèses sur l'évolution corrélée des traits d'histoire de vie, mais pour être employées pour étudier les corrélations entre traits d'histoire de vie, masse, taux de substitution ou dN/dS. Nous proposons ici une approche combinant une méthode comparative basée sur le principe des contrastes indépendants et un modèle d'évolution moléculaire, dans un cadre probabiliste Bayésien. Intégrant, le long d'une phylogénie, sur les reconstructions ancestrales des traits et et de dN/dS nous estimons les covariances entre traits ainsi qu'entre traits et paramètres du modèle d'évolution moléculaire. Un modèle hiérarchique, a été implémenté dans le cadre du logiciel coevol, publié au cours de cette maitrise. Ce modèle permet l'analyse simultané de plusieurs gènes sans perdre la puissance donnée par l'ensemble de séquences. Un travail deparallélisation des calculs donne la liberté d'augmenter la taille du modèle jusqu'à l'échelle du génome. Nous étudions ici les placentaires, pour lesquels beaucoup de génomes complets et de mesures phénotypiques sont disponibles. À la lumière des théories sur les traits d'histoire de vie, notre méthode devrait permettre de caractériser l'implication de groupes de gènes dans les processus biologique liés aux phénotypes étudiés.