Estimation des corrélations phylogénétiques entre paramètres d'évolution moléculaire et Traits d'histoire de vie


Autoria(s): Poujol, Raphael
Contribuinte(s)

Lartillot, Nicolas

Data(s)

27/03/2013

31/12/1969

27/03/2013

01/03/2013

01/02/2013

Resumo

Depuis quelques années, l'évolution moléculaire cherche à caractériser les variations et l'intensité de la sélection grâce au rapport entre taux de substitution synonyme et taux de substitution non-synonyme (dN/dS). Cette mesure, dN/dS, a permis d'étudier l'histoire de la variation de l'intensité de la sélection au cours du temps ou de détecter des épisodes de la sélection positive. Les liens entre sélection et variation de taille efficace interfèrent cependant dans ces mesures. Les méthodes comparatives, quant a elle, permettent de mesurer les corrélations entre caractères quantitatifs le long d'une phylogénie. Elles sont également utilisées pour tester des hypothèses sur l'évolution corrélée des traits d'histoire de vie, mais pour être employées pour étudier les corrélations entre traits d'histoire de vie, masse, taux de substitution ou dN/dS. Nous proposons ici une approche combinant une méthode comparative basée sur le principe des contrastes indépendants et un modèle d'évolution moléculaire, dans un cadre probabiliste Bayésien. Intégrant, le long d'une phylogénie, sur les reconstructions ancestrales des traits et et de dN/dS nous estimons les covariances entre traits ainsi qu'entre traits et paramètres du modèle d'évolution moléculaire. Un modèle hiérarchique, a été implémenté dans le cadre du logiciel coevol, publié au cours de cette maitrise. Ce modèle permet l'analyse simultané de plusieurs gènes sans perdre la puissance donnée par l'ensemble de séquences. Un travail deparallélisation des calculs donne la liberté d'augmenter la taille du modèle jusqu'à l'échelle du génome. Nous étudions ici les placentaires, pour lesquels beaucoup de génomes complets et de mesures phénotypiques sont disponibles. À la lumière des théories sur les traits d'histoire de vie, notre méthode devrait permettre de caractériser l'implication de groupes de gènes dans les processus biologique liés aux phénotypes étudiés.

In recent years, molecular evolution seeks to characterize the variation and intensity of selection through the ratio between non-synonymous and synonymous substitution rates (dN/dS). The dN/dS measure was either used to study the history of the variation of the intensity of selection over time or to detect episodes of positive selection. Correlations between selection and variations of the effective population size interfere in these measurements. The Comparative method can measure correlations between quantitative traits along a phylogeny. They are also be used to test hypotheses of correlated evolution of life history traits, like the body mass, and the substitution rate. We propose an approach combining the comparative method based on the principle of independent contrasts and a model of molecular evolution in a Bayesian probabilistic framework. By integrating along a phylogeny both ancestral reconstructions of lines and of dN/dS we estimate the covariance among traits and between traits and parameters of the model of molecular evolution. A hierarchical model was implemented in the software coevol published during this master. This model allows the simultaneous analysis of multiple genes within a single model. Parallel calculations allow increasing the size of the model to the genome scale. We studied placental mammals, where many complete genomes and phenotypic measurements are available. Based on theories of life history traits, our method is expected to characterize the association of groups of genes in biological processes related to the studied phenotypes.

Identificador

http://hdl.handle.net/1866/9228

Idioma(s)

fr

Palavras-Chave #bayésien #Bayesian #modélisation #modelisation #évolution moléculaire #molecular evolution #phylogénie #phylogeny #Biology - Bioinformatics / Biologie - Bio-informatique (UMI : 0715)
Tipo

Thèse ou Mémoire numérique / Electronic Thesis or Dissertation