992 resultados para BOND-VALENCE PARAMETERS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to develop better catalysts for the cleavage of aryl-X bonds fundamental studies of the mechanism and individual steps of the mechanism have been investigated in detail. As the described studies are difficult at best in catalytic systems, model systems are frequently used. To study aryl-oxygen bond activation, a terphenyl diphosphine scaffold containing an ether moiety in the central arene was designed. The first three chapters of this dissertation focus on the studies of the nickel complexes supported by this diphosphine backbone and the research efforts in regards to aryl-oxygen bond activation.

Chapter 2 outlines the synthesis of a variety of diphosphine terphenyl ether ligand scaffolds. The metallation of these scaffolds with nickel is described. The reactivity of these nickel(0) systems is also outlined. The systems were found to typically undergo a reductive cleavage of the aryl oxygen bond. The mechanism was found to be a subsequent oxidative addition, β-H elimination, reductive elimination and (or) decarbonylation.

Chapter 3 presents kinetic studies of the aryl oxygen bond in the systems outlined in Chapter 2. Using a series of nickel(0) diphosphine terphenyl ether complexes the kinetics of aryl oxygen bond activation was studied. The activation parameters of oxidative addition for the model systems were determined. Little variation was observed in the rate and activation parameters of oxidative addition with varying electronics in the model system. The cause of the lack of variation is due to the ground state and oxidative addition transition state being affected similarly. Attempts were made to extend this study to catalytic systems.

Chapter 4 investigates aryl oxygen bond activation in the presence of additives. It was found that the addition of certain metal alkyls to the nickel(0) model system lead to an increase in the rate of aryl oxygen bond activation. The addition of excess Grignard reagent led to an order of magnitude increase in the rate of aryl oxygen bond activation. Similarly the addition of AlMe3 led to a three order of magnitude rate increase. Addition of AlMe3 at -80 °C led to the formation of an intermediate which was identified by NOESY correlations as a system in which the AlMe3 is coordinated to the ether moiety of the backbone. The rates and activation parameters of aryl oxygen bond activation in the presence of AlMe3 were investigated.

The last two chapters involve the study of metalla-macrocycles as ligands. Chapter 5 details the synthesis of a variety of glyoxime backbones and diphenol precursors and their metallation with aluminum. The coordination chemistry of iron on the aluminum scaffolds was investigated. Varying the electronics of the aluminum macrocycle was found to affect the observed electrochemistry of the iron center.

Chapter 6 extends the studies of chapter 5 to cobalt complexes. The synthesis of cobalt dialuminum glyoxime metal complexes is described. The electrochemistry of the cobalt complexes was investigated. The electrochemistry was compared to the observed electrochemistry of a zinc analog to identify the redox activity of the ligand. In the presence of acid the cobalt complexes were found to electrochemically reduce protons to dihydrogen. The electronics of the ancillary aluminum ligands were found to affect the potential of proton reduction in the cobalt complexes. These potentials were compared to other diglyoximate complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The valence band structures of Al-N-codoped [ZnO:(Al, N)] and N-doped (ZnO:N) ZnO films were studied by normal and soft x-ray photoelectron spectroscopy. The valence-band maximum of ZnO:(Al, N) shifts up to Fermi energy level by about 300 meV compared with that of ZnO:N. Such a shift can be attributed to the existence of a kind of Al-N in ZnO:(Al, N), as supported by core level XPS spectra and comparison of modified Auger parameters. Al-N increased the relative quantity of Zn-N in ZnO:(Al, N), while N-N decreased that of Zn-N in ZnO:N. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influences of microdefects and dislocations on the lattice parameters of undoped semi-insulating GaAs single crystals were analyzed, and a novel nondestructive method for measuring stoichiometry in undoped semi-insulating GaAs was established in this letter. The comparison of this method with coulometric titration indicates that the method of nondestructive measurements is indeed convenient and reliable. (C) 1996 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic properties of wide energy gap zinc-blende structure GaN, AlN and their alloys Ga1-xAlxN are investigated using the empirical pseudopotential method. Electron and hole Effective mass parameters, hydrostatic and shear deformation potential constants of the valence band at Gamma and those of the conduction band at Gamma and X are obtained. The energies of Gamma, X, L conduction valleys of Ga1-xAlxN alloy versus Al fraction x are also calculated. The information will be useful for the design of lattice mismatched heterostructure optoelectronic devices in the blue light range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

set of energies at different internuclear distances for the ground electronic state and two excited electronic states of NaH molecule have been calculated using valence internally contracted multireference configuration interaction(MRCI) including Davidson correction and three basis sets. Then, a potential energy curve (PEC) for each state was determined by extrapolating MRCI energies to the complete basis sets limit. Based on the PECs, accurate vibrational energy levels and rotational constants were determined. The computational PECs are were fitted to analytical potential energy functions using the Murrell-Sorbie potential function. Then, accurate spectroscopic parameters were calculated. Compared with experimental results, values obtained with the basis set extrapolation yield a potential energy curve that gives accurate vibrational energy levels, rotational constants and spectroscopic parameters for the NaH molecule. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relation between the lattice energies and the bulk moduli on binary inorganic crystals was studied, and the concept of lattice energy density is introduced. We find that the lattice energy densities are in good linear relation with the bulk moduli in the same type of crystals, the slopes of fitting lines for various types of crystals are related to the valence and coordination number of cations of crystals, and the empirical expression of calculated slope is obtained. From crystal structure, the calculated results are in very good agreement with the experimental values. At the same time, by means of the dielectric theory of the chemical bond and the calculating method of the lattice energy of complex crystals, the estimative method of the bulk modulus of complex crystals was established reasonably, and the calculated results are in very good agreement with the experimental values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using the average band-gap model, the chemical bond properties of (La1-x, M-x)(2)CuO4(M=Ba, Sr) were calculated. The calculated covalencies for Cu-O and La-O bond in the compounds are 0.3 and 0.03 respectively. Mossbauer isomer shifts of Fe-57 doped in La2CuO4 and Sn-119 doped in La2CuO4 were calculated by using the chemical surrounding factor defined by covalency and electronic polarizability. Four valence state tin and three valence iron sites were identified in Fe-57 and Sn-119 doped La2CuO4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using the chemical bond theory of complex crystals, the chemical bond properties of REBa2Cu3O7 (RE = Eu, Y) were calculated. The calculated covalencies for Cu(1)-O and Cu(2)-O bond in REBa2Cu3O7 compounds are 0.41 and 0.28 respectively. Mossbauer isomer shifts of Fe-57 doped, and Sn-119 doped in REBa2Cu3O7-x were calculated by using the chemical environmental factor, h(e), defined by covalency and electronic polarizability. Four valence state tin ion and iron ion sites were identified in Fe-57 and Sn-119 doped REBa2Cu3O7-x superconductors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using the clinical bond theory of dielectric description, the chemical bond parameters of (Tl.Pb) - 1223 was calculated. The results show that the Sr-O, Tl-O, and Ca-O types of bond have higher ionic character and the Cu-O types of bond have more covalent, character. Mossbauer isomer shifts of Fe-57 and Sn-119 doped in (Tl, Pb) -1223 were calculated by using the chemical environmental factor, h, defined by covalency and electronic polarizability. Four valence state tin and three valence iron sites were identified ill Fe-57, and Sn-119 doped (Tl, Pb) -1223 superconductor. We conclude that all of' the Fe atoms substitute the Cu at square planar Cu (H site, whereas Sn prefers to Substitute the square pyramidal Cu (2) site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using the average bond-gap model, the chemical bond properties of REBa2Cu3O7 were calculated. The calculated covalencies for Cu(1)-O and Cu(2)-O bonds in REBa2Cu3O7 compounds are 0.41 and 0.28 respectively. Mossbauer isomer shifts of Fe-57 doped in EuBa2Cu3O7-x and Sn-119 doped in YBa2Cu3O7-x were calculated by using the chemical surrounding factor, h, defined by covalency and electronic polarizability. The valence states and sites of Fe-57 in EuBa2Cu3O7 and Sn-119 in YBa2Cu3O7-x were identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The investigations of classification on the valence changes from RE3+ to RE2+ (RE = Eu, Sm, Yb, Tm) in host compounds of alkaline earth berate were performed using artificial neural networks (ANNs). For comparison, the common methods of pattern recognition, such as SIMCA, KNN, Fisher discriminant analysis and stepwise discriminant analysis were adopted. A learning set consisting of 24 host compounds and a test set consisting of 12 host compounds were characterized by eight crystal structure parameters. These parameters were reduced from 8 to 4 by leaps and bounds algorithm. The recognition rates from 87.5 to 95.8% and prediction capabilities from 75.0 to 91.7% were obtained. The results provided by ANN method were better than that achieved by the other four methods. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bond covalency, bond susceptibility and macroscopic linear susceptibility in NdCr1-xMxO3 (M=Mn, Fe, Co, 0.0 less than or equal to x less than or equal to 1.0) are investigated by complex chemical bond theory. The results indicate the bond covalencies are insensitive to the doping level. With the increasing doping level, the macroscopic linear susceptibilities increase for M=Mn, Fe, decrease for M=Co. The valence state of Cr can be strongly influenced by the properties of the doping ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Second order nonlinear optical (NLO) tensor coefficients of LiXO3 (X = I, Nb, Ta) type crystals have been evaluated on the basis of the dielectric theory of complex crystals and the modified bond charge model. The current method is capable of calculating single bond contributions to the total second order NLO susceptibility. The tenser values thus calculated agree well with experimental data. By introducing the subformula equation and the concept of the effective charge of one valence electron, we are able to successfully treat such complex crystals as LiXO3 type compounds. In addition, the bond charge expression is modified to a more reasonable form for complex crystals. (C) 1998 Elsevier Science B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel and quantitative study on structure-property relationships has been carried out in urea crystal, based on the dielectric theory of complex crystals and the modified Levine bond charge model, mainly from the chemical bond viewpoint. For the first time, it was treated like this, and the bond parameters and linear and nonlinear characteristics of constituent chemical bonds were presented quantitatively. The theoretical result agrees satisfactorily with the experimental datum and can reasonably explain the nonlinear origin of urea crystal, that is, the C-N bond in the conjugated system of bonds O double left arrow C<--N-H. At the same time, the novel method should be a useful tool toward the future development of the search for new nonlinear optical (NLO) materials in the organic crystal field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Angular Overlap Model (AOM) is applied to the LaOX:Eu3+(X = Cl, Br, I) series involving sigma, pi, delta and phi effects based on the experimental energy levels. The calculations are made in two cases. (1) Consider oxygen and halogen having the same bond-length. (2) Consider the real structure. In both cases, the results show that for sigma-bonding parameters, the values of e(sigma) decrease with increasing charge number of halogen, i.e. Cl- > Br- > I-, this indicates that the bonding ability also decreases with this order. The absolute values of each parameter are much larger than zero-therefore they all must be included in a practical analysis. In the second case, the values of the e(pi) parameter are negative, which means a ''back-bonding'' is formed, and this is profitable for the formation of sigma-bonding, usually referred to as ''synergic effect''.