994 resultados para Approximation theory
Mensuração do comprimento das fibras para a determinação da madeira juvenil em Eucalyptus citriodora
Resumo:
The juvenile wood has peculiar characteristics from the anatomical structure and physical-mechanical properties, considering these aspects the knowledge of the wood is essential for wood adequate utilization. The aim of this work was to determinate the zone of juvenile wood of pith-bark direction in Eucalyptus citriodora. The juvenile and mature wood zones were determined across fiber length measurement in various height in the tree stem. Results showed that juvenile wood zone occurs approximately up to the 45 at 55 mm from the pith.
Resumo:
Szego{double acute} has shown that real orthogonal polynomials on the unit circle can be mapped to orthogonal polynomials on the interval [-1,1] by the transformation 2x=z+z-1. In the 80's and 90's Delsarte and Genin showed that real orthogonal polynomials on the unit circle can be mapped to symmetric orthogonal polynomials on the interval [-1,1] using the transformation 2x=z1/2+z-1/2. We extend the results of Delsarte and Genin to all orthogonal polynomials on the unit circle. The transformation maps to functions on [-1,1] that can be seen as extensions of symmetric orthogonal polynomials on [-1,1] satisfying a three-term recurrence formula with real coefficients {cn} and {dn}, where {dn} is also a positive chain sequence. Via the results established, we obtain a characterization for a point w(|w|=1) to be a pure point of the measure involved. We also give a characterization for orthogonal polynomials on the unit circle in terms of the two sequences {cn} and {dn}. © 2013 Elsevier Inc.
Resumo:
We investigate the mutual location of the zeros of two families of orthogonal polynomials. One of the families is orthogonal with respect to the measure dμ (x), supported on the interval (a, b) and the other with respect to the measure |x -c|τ|x -d|γdμ (x), where c and d are outside (a, b) We prove that the zeros of these polynomials, if they are of equal or consecutive degrees, interlace when either 0 < τ, γ ≤ 1 or γ = 0 and 0 < τ ≤ 2. This result is inspired by an open question of Richard Askey and it generalizes recent results on some families of orthogonal polynomials. Moreover, we obtain further statements on interlacing of zeros of specific orthogonal polynomials, such as the Askey-Wilson ones. © 2013 Elsevier Inc.
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work it is discussed the performance of the reactive power demand in three-leg transformer core and three-phase transformer bank, under different conditions of AC/DC double excitation. In order to analyse the influence of double excitation in reactive power theoretically a mathematical model was developed considering the mutual coupling between phases and the magnetic nonlinearity. The validity of the proposed model is verified by means of the experimental and simulated results.
Resumo:
A circuit for transducer linearizer tasks have been designed and built using discrete components and it implements by: a Radial Basis Function Network (RBFN) with three basis functions. The application in a linearized thermistor showed that the network has good approximation capabilities. The circuit advantages is the amplitude, width and center.
Sharp estimates for eigenvalues of integral operators generated by dot product kernels on the sphere
Resumo:
We obtain explicit formulas for the eigenvalues of integral operators generated by continuous dot product kernels defined on the sphere via the usual gamma function. Using them, we present both, a procedure to describe sharp bounds for the eigenvalues and their asymptotic behavior near 0. We illustrate our results with examples, among them the integral operator generated by a Gaussian kernel. Finally, we sketch complex versions of our results to cover the cases when the sphere sits in a Hermitian space.
Resumo:
We introduce in this paper a method to calculate the Hessenberg matrix of a sum of measures from the Hessenberg matrices of the component measures. Our method extends the spectral techniques used by G. Mantica to calculate the Jacobi matrix associated with a sum of measures from the Jacobi matrices of each of the measures. We apply this method to approximate the Hessenberg matrix associated with a self-similar measure and compare it with the result obtained by a former method for self-similar measures which uses a fixed point theorem for moment matrices. Results are given for a series of classical examples of self-similar measures. Finally, we also apply the method introduced in this paper to some examples of sums of (not self-similar) measures obtaining the exact value of the sections of the Hessenberg matrix.
Resumo:
En esta tesis presentamos una teoría adaptada a la simulación de fenómenos lentos de transporte en sistemas atomísticos. En primer lugar, desarrollamos el marco teórico para modelizar colectividades estadísticas de equilibrio. A continuación, lo adaptamos para construir modelos de colectividades estadísticas fuera de equilibrio. Esta teoría reposa sobre los principios de la mecánica estadística, en particular el principio de máxima entropía de Jaynes, utilizado tanto para sistemas en equilibrio como fuera de equilibrio, y la teoría de las aproximaciones del campo medio. Expresamos matemáticamente el problema como un principio variacional en el que maximizamos una entropía libre, en lugar de una energía libre. La formulación propuesta permite definir equivalentes atomísticos de variables macroscópicas como la temperatura y la fracción molar. De esta forma podemos considerar campos macroscópicos no uniformes. Completamos el marco teórico con reglas de cuadratura de Monte Carlo, gracias a las cuales obtenemos modelos computables. A continuación, desarrollamos el conjunto completo de ecuaciones que gobiernan procesos de transporte. Deducimos la desigualdad de disipación entrópica a partir de fuerzas y flujos termodinámicos discretos. Esta desigualdad nos permite identificar la estructura que deben cumplir los potenciales cinéticos discretos. Dichos potenciales acoplan las tasas de variación en el tiempo de las variables microscópicas con las fuerzas correspondientes. Estos potenciales cinéticos deben ser completados con una relación fenomenológica, del tipo definido por la teoría de Onsanger. Por último, aportamos validaciones numéricas. Con ellas ilustramos la capacidad de la teoría presentada para simular propiedades de equilibrio y segregación superficial en aleaciones metálicas. Primero, simulamos propiedades termodinámicas de equilibrio en el sistema atomístico. A continuación evaluamos la habilidad del modelo para reproducir procesos de transporte en sistemas complejos que duran tiempos largos con respecto a los tiempos característicos a escala atómica. ABSTRACT In this work, we formulate a theory to address simulations of slow time transport effects in atomic systems. We first develop this theoretical framework in the context of equilibrium of atomic ensembles, based on statistical mechanics. We then adapt it to model ensembles away from equilibrium. The theory stands on Jaynes' maximum entropy principle, valid for the treatment of both, systems in equilibrium and away from equilibrium and on meanfield approximation theory. It is expressed in the entropy formulation as a variational principle. We interpret atomistic equivalents of macroscopic variables such as the temperature and the molar fractions, wich are not required to be uniform, but can vary from particle to particle. We complement this theory with Monte Carlo summation rules for further approximation. In addition, we provide a framework for studying transport processes with the full set of equations driving the evolution of the system. We first derive a dissipation inequality for the entropic production involving discrete thermodynamic forces and fluxes. This discrete dissipation inequality identifies the adequate structure for discrete kinetic potentials which couple the microscopic field rates to the corresponding driving forces. Those kinetic potentials must finally be expressed as a phenomenological rule of the Onsanger Type. We present several validation cases, illustrating equilibrium properties and surface segregation of metallic alloys. We first assess the ability of a simple meanfield model to reproduce thermodynamic equilibrium properties in systems with atomic resolution. Then, we evaluate the ability of the model to reproduce a long-term transport process in complex systems.
Resumo:
Vita.
Resumo:
AMS subject classification: 41A17, 41A50, 49Kxx, 90C25.
Resumo:
This dissertation has two almost unrelated themes: privileged words and Sturmian words. Privileged words are a new class of words introduced recently. A word is privileged if it is a complete first return to a shorter privileged word, the shortest privileged words being letters and the empty word. Here we give and prove almost all results on privileged words known to date. On the other hand, the study of Sturmian words is a well-established topic in combinatorics on words. In this dissertation, we focus on questions concerning repetitions in Sturmian words, reproving old results and giving new ones, and on establishing completely new research directions. The study of privileged words presented in this dissertation aims to derive their basic properties and to answer basic questions regarding them. We explore a connection between privileged words and palindromes and seek out answers to questions on context-freeness, computability, and enumeration. It turns out that the language of privileged words is not context-free, but privileged words are recognizable by a linear-time algorithm. A lower bound on the number of binary privileged words of given length is proven. The main interest, however, lies in the privileged complexity functions of the Thue-Morse word and Sturmian words. We derive recurrences for computing the privileged complexity function of the Thue-Morse word, and we prove that Sturmian words are characterized by their privileged complexity function. As a slightly separate topic, we give an overview of a certain method of automated theorem-proving and show how it can be applied to study privileged factors of automatic words. The second part of this dissertation is devoted to Sturmian words. We extensively exploit the interpretation of Sturmian words as irrational rotation words. The essential tools are continued fractions and elementary, but powerful, results of Diophantine approximation theory. With these tools at our disposal, we reprove old results on powers occurring in Sturmian words with emphasis on the fractional index of a Sturmian word. Further, we consider abelian powers and abelian repetitions and characterize the maximum exponents of abelian powers with given period occurring in a Sturmian word in terms of the continued fraction expansion of its slope. We define the notion of abelian critical exponent for Sturmian words and explore its connection to the Lagrange spectrum of irrational numbers. The results obtained are often specialized for the Fibonacci word; for instance, we show that the minimum abelian period of a factor of the Fibonacci word is a Fibonacci number. In addition, we propose a completely new research topic: the square root map. We prove that the square root map preserves the language of any Sturmian word. Moreover, we construct a family of non-Sturmian optimal squareful words whose language the square root map also preserves.This construction yields examples of aperiodic infinite words whose square roots are periodic.