Differential orthogonality: Laguerre and Hermite cases with applications
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
22/10/2015
22/10/2015
01/08/2015
|
Resumo |
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Processo FAPESP: 2012/21042-0 Let mu be a finite positive Borel measure supported on R, L[f] = xf ''+ (alpha +1 - x)f'with alpha > -1, or L[f] = 1/2f ''- xf', and m a natural number. We study algebraic, analytic and asymptotic properties of the sequence of monic polynomials {Q(n)}(n>m) that satisfy the orthogonality relationsintegral L[Q(n)](x)x(k)d mu(x) = 0 for all 0 <= k <= n - 1.We also provide a fluid dynamics model for the zeros of these polynomials. (C) 2015 Elsevier Inc. All rights reserved. |
Formato |
111-130 |
Identificador |
http://www.sciencedirect.com/science/article/pii/S0021904515000611 Journal Of Approximation Theory. San Diego: Academic Press Inc Elsevier Science, v. 196, p. 111-130, 2015. 0021-9045 http://hdl.handle.net/11449/129817 http://dx.doi.org/10.1016/j.jat.2015.03.005 WOS:000356634000006 |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Journal Of Approximation Theory |
Direitos |
closedAccess |
Palavras-Chave | #Orthogonal polynomials #Ordinary differential operators #Asymptotic analysis #Weak star convergence #Hydrodynamic |
Tipo |
info:eu-repo/semantics/article |