900 resultados para Antagonistic yeast
Resumo:
Mitochondria are essential for cellular energy production in most eukaryotic organisms. However, when glucose is abundant, yeast species that underwent whole-genome duplication (WGD) mostly conduct fermentation even under aerobic conditions, and most can
Resumo:
Recent transcription profiling studies have revealed an unexpectedly large proportion of antisense transcripts in eukaryotic genomes. These antisense genes seem to regulate gene expression by interacting with sense genes. Previous studies have focused on the non-coding antisense genes, but the possible regulatory role of the antisense protein is poorly understood. In this study, we found that a protein encoded by the antisense gene ADF1 acts as a transcription suppressor, regulating the expression of sense gene MDF1 in Saccharomyces cerevisiae. Based on the evolutionary, genetic, cytological and biochemical evidence, we show that the protein-coding sense gene MDF1 most likely originated de novo from a previously non-coding sequence and can significantly suppress the mating efficiency of baker's yeast in rich medium by binding MAT alpha 2 and thus promote vegetative growth. These results shed new light on several important issues, including a new sense-antisense interaction mechanism, the de novo origination of a functional gene, and the regulation of yeast mating pathway.
Resumo:
形成真核生物mRNA 3^末端的多聚腺苷(poly (A))作用涉及前体mRNA下游的三个元件:效率元件(EE)、定位元件(PE)以及实际的剪切和poly(A)作用位点,实验研究提出了一些EE和PE的碱基序列组成。对180个Yeast基因下游(终止密码子后200个碱基)二级结构进行的详细分析显示,约86%的EE、89%的PE与二级结构中碱基非配对的环(发夹环、膨胀环、内环或多分支环)区或连接单链区有关。这个结果提示,反式因子对EE和PE的识别和作用在一定程度上有赖于EE和PE的二级结构特征。借助mRNA二级结构可以提高对EE和PE位点预测的准确性。
Resumo:
We have cloned a mouse homologue (designated Myak) of the yeast protein kinase YAK1. The 1210 aa open reading frame contains a putative protein kinase domain, nuclear localization sequences and PEST sequences. Myak appears to be a member of a growing family of YAK1-related genes that include Drosophila and human Minibrain as well as a recently identified rat gene ANPK that encode a steroid hormone receptor interacting protein. RNA blot analysis revealed that Myak is expressed at low levels ubiquitously but at high levels in reproductive tissues, including testis, epididymis, ovary, uterus, and mammary gland, as well as in brain and kidney. In situ hybridization analysis on selected tissues revealed that Myak is particularly abundant in the hormonally modulated epithelia of the epididymis, mammary gland, and uterus, in round spermatids in the testis, and in the corpora lutea in the ovary, Myak is also highly expressed in the aqueduct of the adult brain and in the brain and spinal cord of day 12.5 embryos, Mol. Reprod. Dev. 55:372-378, 2000. (C) 2000 Wiley-Liss, Inc.
Resumo:
Polyadenylation of 3 ' -forming in eukaryote concerns three elements located in precursor mRNA downstream region: efficiency element (EE), position element (PE) and the actual site for cleavage and polyadenylation. Several base sequences of EE and PE have
Resumo:
A comparative analysis on the intron sequence oligonucleotide usages in two sets of yeast genes with higher and lower transcription frequencies, respectively, has shown that the intron sequence structures of the two sets of genes are different. There are more potential binding sites for transcription factors in the introns of the genes with high transcription frequencies. So it is speculated that introns regulate the transcription of genes. But more evidences are needed to favor this speculation. The detailed comparative analyses on the distribution ( length and position) of introns and exons in the two sets of gene sequences also show that there is an obvious boundary between the lengths of the two sets of introns. There is no boundary between the lengths of the two sets of exons, although the means of their lengths are of discrepancy. The situation of the gene lengths ( length of intron and exon) is similar to exon lengths. As far as the relative position, the introns in two sets of genes all have a bias toward the 5' ends of genes. But as the actual position is considered, more introns in high transcription genes have a tendency to be located toward the 5' ends of genes, some even located at 5'-UTR. These results suggest that the gene transcription rates are related to the length of intron, but not to the lengths of exons and genes sequences. The positions of introns may also influence the transcription rates. The transcriptional regulation of introns may be correlative with the transcriptional regulation of the upstream of genes, or be its continuous action.
Resumo:
A great deal of experimental studies have shown that many introns of eukaryotic genes function as regulators of transcription. However, comprehensive studies of this problem have not yet been conducted. After checking the transcription frequencies of some Saccharomyces cerevisiae (yeast), genes and their introns, a remarkable phenomenon was discovered that generally the introns of the genes with higher transcription frequencies are longer, and the introns of the genes with lower transcription frequencies are shorter. This suggests that the longer introns of genes with higher transcription frequencies may contain some characteristic sequence structures, which could enhance the transcription of genes. Therefore, two sets of introns of yeast genes were chosen for further study. The transcription frequencies of the first set of genes are higher (>30), and those of the second set of genes are lower (less than or equal to10). Some oligonucleotides are detected by statistically comparative analyses of the occurrence frequencies of oligonucleotides (mainly tetranucleotides and pentanucleotides), whose occurrence frequencies in the first set of introns; are significantly higher than those in the second set of introns, and are also significantly higher than those in the exons flanking the introns of the first set. Some of these extracted oligonucleotides are the same as the regulatory elements of transcription revealed by experimental analyses. Besides, the distributions of these extracted oligonucleotides in the two sets of introns and the exons show that the sequence structures of the first set of introns are favorable for transcription of genes.
Resumo:
We conducted a comparative statistical analysis of tetra- through hexanucleotide frequencies in two sets of introns of yeast genes. The first set consisted of introns of genes that have transcription rates higher than 30 mRNAs/h while the second set contained introns of genes whose transcription rates were lower than or equal to 10 mRNAs/h. Some oligonucleotides whose occurrence frequencies in the first set of introns are significantly higher than those in the second set of introns were detected. The frequencies of occurrence of most of these detected oligonucleotides are also significantly higher than those in the exons flanking the introns of the first set. Interestingly some of these detected oligonucleotides are the same as well known "signature" sequences of transcriptional regulatory elements. This could imply the existence of potential positive regulatory motifs of transcription in yeast introns. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Ure2p is the protein determinant of the Saccharomyces cerevisiae prion state [URE3]. Constitutive overexpression of the HSP70 family member SSA1 cures cells of [URE3]. Here, we show that Ssa1p increases the lag time of Ure2p fibril formation in vitro in the presence or absence of nucleotide. The presence of the HSP40 co-chaperone Ydj1p has an additive effect on the inhibition of Ure2p fibril formation, whereas the Ydj1p H34Q mutant shows reduced inhibition alone and in combination with Ssa1p. In order to investigate the structural basis of these effects, we constructed and tested an Ssa1p mutant lacking the ATPase domain, as well as a series of C-terminal truncation mutants. The results indicate that Ssa1p can bind to Ure2p and delay fibril formation even in the absence of the ATPase domain, but interaction of Ure2p with the substrate-binding domain is strongly influenced by the C-terminal lid region. Dynamic light scattering, quartz crystal microbalance assays, pull-down assays and kinetic analysis indicate that Ssa1p interacts with both native Ure2p and fibril seeds, and reduces the rate of Ure2p fibril elongation in a concentration-dependent manner. These results provide new insights into the structural and mechanistic basis for inhibition of Ure2p fibril formation by Ssa1p and Ydj1p.
Resumo:
Ure2p is the protein determinant of the Saccharomyces cerevisiae prion state [URE3]. Constitutive overexpression of the HSP70 family member SSA1 cures cells of [URE3]. Here, we show that Ssa1p increases the lag time of Ure2p fibril formation in vitro in the presence or absence of nucleotide. The presence of the HSP40 co-chaperone Ydj1p has an additive effect on the inhibition of Ure2p fibril formation, whereas the Ydj1p H34Q mutant shows reduced inhibition alone and in combination with Ssa1p. In order to investigate the structural basis of these effects, we constructed and tested an Ssa1p mutant lacking the ATPase domain, as well as a series of C-terminal truncation mutants. The results indicate that Ssa1p can bind to Ure2p and delay fibril formation even in the absence of the ATPase domain, but interaction of Ure2p with the substrate-binding domain is strongly influenced by the C-terminal lid region. Dynamic light scattering, quartz crystal microbalance assays, pull-down assays and kinetic analysis indicate that Ssa1p interacts with both native Ure2p and fibril seeds, and reduces the rate of Ure2p fibril elongation in a concentration-dependent manner. These results provide new insights into the structural and mechanistic basis for inhibition of Ure2p fibril formation by Ssa1p and Ydj1p.
Resumo:
We have previously reported the development of a novel genotoxic testing system based on the transcriptional response of the yeast RNR3-lacZ reporter gene to DNA damage. This system appears to be more sensitive than other similar tests in microorganisms, and is comparable with the Ames test. In an effort to further enhance detection sensitivity, we examined the effects of altering major cell wall components on cell permeability and subsequent RNR3-lacZ sensitivity to genotoxic agents. Although inactivation of single CWP genes encoding cell wall mannoproteins had little effect, the simultaneous inactivation of both CWP1 and CWP2 had profound effects on the cell wall structure and permeability. Consequently, the RNR3-lacZ detection sensitivity is markedly enhanced, especially to high molecular weight compounds such as 4-nitroquinoline-N-oxide (> sevenfold) and phleomycin (> 13-fold). In contrast, deletion of genes encoding representative membrane components or membrane transporters had minor effects on cell permeability. We conclude that the yeast cell wall mannoproteins constitute the major barrier to environmental genotoxic agents and that their removal will significantly enhance the sensitivity of RNR-lacZ as well as other yeast-based genotoxic tests.