995 resultados para Animal locomotion Disorders
Resumo:
Background: Gynaecomastia in male goats is characterized by abnormal development of the mammary gland. Enlarged udder may be observed cranially to the scrotum, which can occasionally reach the size of the testicles. The udder may carry functional glands and impair the animal's reproductive performance and welfare. The case of a successful surgical treatment of gynaecomastia in a high reproductive performance Saanen buck-goat is reported in the present study.Material, Methods & Results: The animal was admitted presenting significant augmentation of the mammary glands, which was clinically diagnosed as gynaecomastia. The male goat owned optimal phenotypic characteristics for the Saanen breed, which had been producing high performance descendents. The mammary glands had been impairing the goat's locomotion and sexual performance. Manual milking resulted in great amount of milk secretion. The animal presented anorexia and impaired sexual performance. After clinical and laboratorial evaluation, the animal was submitted to radical mastectomy. An elliptic skin incision was performed around each mammary gland. Subcuticular blunt dissection was accomplished to isolate the mammarian tissue from the abdominal muscular layer and the spermatic chord. The excised mass was sampled for histological assessment. Subcuticular layer and skin closure was carried in a routine fashion. Hygienization of the surgical wound was performed with 2,5% PVP-I solution for ten days. Additionally, an association of penicillin G benzathine and streptomycin, and fluxinin meglumine were also given. The surgical procedure was successfully accomplished without any peroperative complication. The excised mass was sampled for anatomic/histological assessment. Macroscopically, the left mammary gland presented 22 cm in length, 12 cm wide and 26 cm in diameter. The right gland presented 16 cm in length, 7 cm wide and 13,5 cm in diameter. The microscopic assessment revealed hyperplasia of the glandular ducts. No abnormalities resembling malignant mammary neoplasms or degeneration were observed. At the end of the treatment, the animal was completely recovered. The animal convalesced satisfactorily and surgical wound healed completely within the first 10 days post-op. The goat was not culled and returned to normal reproductive activity. Within 12 months of follow-up, the animal was able to produce high milk yield performance progenies.Discussion: This case report presented relevant aspects of the surgical management of gynaecomastia, especially to veterinary practitioners dealing with milk goats. Gynaecomastia is not as common as other reproductive disorders in domestic animals. In opposition to the findings of the present study, other trials revealed that gynaecomastia usually does not affect fertility, libido, ejaculate parameters and sexual performance of goats. However, it is important to consider that neoplasic disorders such as mammary adenocarcinoma may be present, even though these are rare complications. Last but not least, the decision making on mastectomy in the present study was crucial in order to reestablish the animal's welfare and its functionality in the farms reproduction program.
Resumo:
Autism comprises a heterogeneous group of neurodevelopmental disorders that affects the brain maturation and produces sensorial, motor, language and social interaction deficits in early childhood. Several studies have shown a major involvement of genetic factors leading to a predisposition to autism, which are possibly affected by environmental modulators during embryonic and post-natal life. Recent studies in animal models indicate that alterations in epigenetic control during development can generate neuronal maturation disturbances and produce a hyper-excitable circuit, resulting in typical symptoms of autism. In the animal model of autism induced by valproic acid (VPA) during rat pregnancy, behavioral, electrophysiological and cellular alterations have been reported which can also be observed in patients with autism. However, only a few studies have correlated behavioral alterations with the supposed neuronal hyper-excitability in this model. The aim of this project was to generate an animal model of autism by pre-natal exposure to VPA and evaluate the early post-natal development and pre-puberal (PND30) behavior in the offspring. Furthermore, we quantified the parvalbumin-positive neuronal distribution in the medial prefrontal cortex and Purkinje cells in the cerebellum of VPA animals. Our results show that VPA treatment induced developmental alterations, which were observed in behavioral changes as compared to vehicle-treated controls. VPA animals showed clear behavioral abnormalities such as hyperlocomotion, prolonged stereotipies and reduced social interaction with an unfamiliar mate. Cellular quantification revealed a decrease in the number of parvalbumin-positive interneurons in the anterior cingulate cortex and in the prelimbic cortex of the mPFC, suggesting an excitatory/inhibitory unbalance in this animal model of autism. Moreover, we also observed that the neuronal reduction occurred mainly in the cortical layers II/III and V/VI. We did not detect any change in the density of Purkinje neurons in the Crus I region of the cerebellar cortex. Together, our results strengthens the face validity of the VPA model in rats and shed light on specific changes in the inhibitory circuitry of the prefrontal cortex in this autism model. Further studies should address the challenges to clarify particular electrophysiological correlates of the cellular alterations in order to better understand the behavioral dysfunctions
Resumo:
The use of non-human primates in scientific research has contributed significantly to the biomedical area and, in the case of Callithrix jacchus, has provided important evidence on physiological mechanisms that help explain its biology, making the species a valuable experimental model in different pathologies. However, raising non-human primates in captivity for long periods of time is accompanied by behavioral disorders and chronic diseases, as well as progressive weight loss in most of the animals. The Primatology Center of the Universidade Federal do Rio Grande do Norte (UFRN) has housed a colony of C. jacchus for nearly 30 years and during this period these animals have been weighed systematically to detect possible alterations in their clinical conditions. This procedure has generated a volume of data on the weight of animals at different age ranges. These data are of great importance in the study of this variable from different perspectives. Accordingly, this paper presents three studies using weight data collected over 15 years (1985-2000) as a way of verifying the health status and development of the animals. The first study produced the first article, which describes the histopathological findings of animals with probable diagnosis of permanent wasting marmoset syndrome (WMS). All the animals were carriers of trematode parasites (Platynosomum spp) and had obstruction in the hepatobiliary system; it is suggested that this agent is one of the etiological factors of the syndrome. In the second article, the analysis focused on comparing environmental profile and cortisol levels between the animals with normal weight curve evolution and those with WMS. We observed a marked decrease in locomotion, increased use of lower cage extracts and hypocortisolemia. The latter is likely associated to an adaptation of the mechanisms that make up the hypothalamus-hypophysis-adrenal axis, as observed in other mammals under conditions of chronic malnutrition. Finally, in the third study, the animals with weight alterations were excluded from the sample and, using computational tools (K-means and SOM) in a non-supervised way, we suggest found new ontogenetic development classes for C. jacchus. These were redimensioned from five to eight classes: infant I, infant II, infant III, juvenile I, juvenile II, sub-adult, young adult and elderly adult, in order to provide a more suitable classification for more detailed studies that require better control over the animal development
Resumo:
Memory and anxiety are related phenomena. Several evidences suggest that anxiety is fundamental for learnining and may facilitate or impair the memory formation process depending of the context. The majority of animal studies of anxiety and fear use only males as experimental subjects, while studies with females are rare in the literature. However, the prevalence in phobic and anxiety disorders is greater in women than in men. Moreover, it is known that gender maybe influence benzodiazepine effects, the classic drugs used for anxiety disorders treatment. In this respect, to further investigate if fear/anxiety aspects related to learning in female subjects would contribute to the study of phobic and anxiety disorders and their relationship with learning/memory processes, the present work investigates (a) the effects of benzodiazepine diazepam on female rats performance in a aversive memory task that assess concomitantly anxiety/emotionality, as the interaction between both; (b) the influence of estrous cycle phases of female rats on diazepam effects at aversive memory and anxiety/emotionality, and the interaction between both and (c) the role of hormonal fluctuations during estrous cycle phases in absence of diazepam effects in proestrus, because female rats in this phase received or not mifepristone, the antagonist of progesterone receptor, previously to the diazepam treatment. For this purpose, the plus maze discriminative avoidance task, previously validated for studies of anxiety concomitantly to learning/memory, was used. The apparatus employed is an adaptation of a conventional plus maze, with two opens arms and two closed arms, one of which presenting aversive stimulation (noise and light). The parameters used were: time in non-aversive arm compared to time in aversive and percentage of time in aversive arm on several temporal divisions, in order to evaluate memory; percentage of time in open arms, risk assessment, head dipping and end exploring to evaluate anxiety ; and distance traveled for locomotion. In experiment I, we found anxiolytic effect of diazepam only for 4 mg/kg dose, however the amnestic effect appear at a dose of 2 mg/kg. In second experiment, rats were divided in groups according estrous cycle phase (metaestrus/diestrus, proestrus e estrus). In this experiment, when we considered estrous cycle phase or diazepam treatment, the results did not demonstrate any differences in anxiety/emotionality parameters. The amnestic effects of diazepam occur in female rats in metestrus/diestrus and estrus and is absent in proestrous rats. Proestrous female rats that received mifepristone exhibited the amnestic effect of diazepam and also anxiolytic effects, that it was not previously observed in this dose. The results have demonstrated dissociation of anxiolytic and amnestic diazepam effects, not previously observed in males; the absence of amnestic effect of diazepam in proestrous phase; and the possible role of progesterone in aversive memory over diazepam effect, because the mifepristone, associated with diazepam, caused amnestic effect in proestrus
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Neospora caninum, bovine viral diarrhea virus (BVDV) and bovine herpes virus 1 (BHV-1) are worldwide spread pathogens associated with reproductive problems in cattle. The present work aimed to observe the infection pattern of these three pathogens in two dairy herds with distinct reproductive managements from Triângulo Mineiro, Minas Gerais State, Brazil. The herds were not vaccinated against either N. caninum, BVDV or BHV-1. Blood samples were collected and analyzed for presence of specific antibodies, and N. caninum IgG avidity was measured in N. caninum positive samples. In herd 1, 34 out of 174 sampled cows (20%) had antibodies to N. caninum and the seropositivity of BVDV and BHV-1 were 62% and 86%, respectively. Of 69 sampled cows in herd 2. 7 (10%) had antibodies to N. caninum, and 49% and 39% were seropositive to BVDV and BHV-1, respectively. The IgG avidity profiles indicated that N. caninum had been present in both herds for some years and that herd 1 had an ongoing horizontal spread of the parasite. The results indicate that the studied reproductive pathogens were present in the herds and partly may have contributed to their reproductive problems.
Resumo:
Aims: To discuss the importance of studying animal models to test hypotheses about the mechanisms of urinary continence and pathophysiology of diabetes and urinary incontinence. Source of Data: A literature review was conducted in PubMed and SciELO. The key words used were diabetes, urinary incontinence, urethra, human and rats. Summary of Findings: There is a strong relation between the genesis of urinary incontinence and diabetes mellitus. Due to the similarity of normal distribution of skeletal muscle and urethra anatomy between humans and rats, these animal models have been used in current research about these disorders. Conclusions: The use of rats as an animal model is suitable for experimental studies that test hypotheses about the mechanisms of continence and pathophysiology of the binomial diabetes mellitus and urinary incontinence, thus enabling solutions of great value in clinical practice.
Resumo:
Background: The current treatments for anxiety disorders and depression have multiple adverse effects in addition to a delayed onset of action, which has prompted efforts to find new substances with potential activity in these disorders. Citrus aurantium was chosen based on ethnopharmacological data because traditional medicine refers to the Citrus genus as useful in diminishing the symptoms of anxiety or insomnia, and C. aurantium has more recently been proposed as an adjuvant for antidepressants. In the present work, we investigated the biological activity underlying the anxiolytic and antidepressant effects of C. aurantium essential oil (EO), the putative mechanism of the anxiolytic-like effect, and the neurochemical changes in specific brain structures of mice after acute treatment. We also monitored the mice for possible signs of toxicity after a 14-day treatment.Methods: The anxiolytic-like activity of the EO was investigated in a light/dark box, and the antidepressant activity was investigated in a forced swim test. Flumazenil, a competitive antagonist of benzodiazepine binding, and the selective 5-HT1A receptor antagonist WAY100635 were used in the experimental procedures to determine the mechanism of action of the EO. To exclude false positive results due to motor impairment, the mice were submitted to the rotarod test.Results: The data suggest that the anxiolytic-like activity observed in the light/dark box procedure after acute (5 mg/kg) or 14-day repeated (1 mg/kg/day) dosing was mediated by the serotonergic system (5-HT1A receptors). Acute treatment with the EO showed no activity in the forced swim test, which is sensitive to antidepressants. A neurochemical evaluation showed no alterations in neurotransmitter levels in the cortex, the striatum, the pons, and the hypothalamus. Furthermore, no locomotor impairment or signs of toxicity or biochemical changes, except a reduction in cholesterol levels, were observed after treatment with the EO.Conclusion: This work contributes to a better understanding of the biological activity of C. aurantium EO by characterizing the mechanism of action underlying its anxiolytic-like activity. © 2013 Costa et al; licensee BioMed Central Ltd.
Resumo:
Prostatic lesions such as prostatic intraepithelial neoplasia (PIN) and proliferative inflammatory atrophy (PIA) are studied in human and canine species due to their malignance potential. The plasminogen activator (PA) system has been suggested to play a central role in cell adhesion, angiogenesis, inflammation, and tumor invasion. The urokinase-type plasminogen activator receptor (uPAR) is a component of the PA, with a range of expression in tumor and stromal cells. In this study, uPAR expression in both canine normal prostates and with proliferative disorders (benign prostatic hyperplasia-BPH, proliferative inflammatory atrophy-PIA, prostatic intraepithelial neoplasia-PIN, and carcinoma-PC) was evaluated by immunohistochemistry in a tissue microarray (TMA) slide to establish the role of this enzyme in extracellular matrix (ECM) remodeling and in the processes of tissue invasion. A total of 298 cores and 355 diagnoses were obtained, with 36 (10.1%) normal prostates, 46 (13.0%) with BPH, 128 (36.1%) with PIA, 74 (20.8%) with PIN and 71 (20.0%) with PC. There is variation in the expression of uPAR in canine prostate according to the lesion, with lower expression in normal tissue and with BPH, and higher expression in tissue with PIA, PIN and PC. The high expression of uPAR in inflammatory and neoplastic microenvironment indicates increased proteolytic activity in canine prostates with PIA, PIN, and PC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: Mounting evidence suggests that the limbic system is pathologically involved in cases of psychiatric comorbidities in temporal lobe epilepsy (TLE) patients. Our objective was to develop a conceptual framework describing how neuropathological and connectivity changes might contribute to the development of psychosis and to the potential neurobiological mechanisms that cause schizophrenia-like psychosis in TLE patients. Methods: In this review, clinical and neuropathological findings, especially brain circuitry of the limbic system, were examined together to enhance our understanding of the association between TLE and psychosis. Finally, the importance of animal models in epilepsy and psychiatric disorders was discussed. Conclusions: TLE and psychiatric symptoms coexist more frequently than chance would predict. Damage and deregulation among critical anatomical regions, such as the hippocampus, amygdala, thalamus, and the temporal, frontal and cingulate cortices, might predispose TLE brains to psychosis. Studies of the effects of kindling and injection of neuroactive substances on behavior and electrophysiological patterns may offer a model of how limbic seizures in humans increase the vulnerability of TLE patients to psychiatric symptoms.
Resumo:
Objective: There is accumulating evidence that the limbic system is pathologically involved in cases of psychiatric comorbidities in temporal lobe epilepsy (TLE) patients. Our objective was to develop a conceptual framework describing how neuropathological, neurochemical and electrophysiological aspects might contribute to the development of psychiatric symptoms in TLE and the putative neurobiological mechanisms that cause mood disorders in this patient subgroup. Methods: In this review, clinical, experimental and neuropathological findings, as well as neurochemical features of the limbic system were examined together to enhance our understanding of the association between TLE and psychiatric comorbidities. Finally, the value of animal models in epilepsy and mood disorders was discussed. Conclusions: TLE and psychiatric symptoms coexist more frequently than chance would predict. Alterations and neurotransmission disturbance among critical anatomical networks, and impaired or aberrant plastic changes might predispose patients with TLE to mood disorders. Clinical and experimental studies of the effects of seizures on behavior and electrophysiological patterns may offer a model of how limbic seizures increase the vulnerability of TLE patients to precipitants of psychiatric symptoms.
Resumo:
OBJECTIVE: Mounting evidence suggests that the limbic system is pathologically involved in cases of psychiatric comorbidities in temporal lobe epilepsy (TLE) patients. Our objective was to develop a conceptual framework describing how neuropathological and connectivity changes might contribute to the development of psychosis and to the potential neurobiological mechanisms that cause schizophrenia-like psychosis in TLE patients. METHODS: In this review, clinical and neuropathological findings, especially brain circuitry of the limbic system, were examined together to enhance our understanding of the association between TLE and psychosis. Finally, the importance of animal models in epilepsy and psychiatric disorders was discussed. CONCLUSIONS: TLE and psychiatric symptoms coexist more frequently than chance would predict. Damage and deregulation among critical anatomical regions, such as the hippocampus, amygdala, thalamus, and the temporal, frontal and cingulate cortices, might predispose TLE brains to psychosis. Studies of the effects of kindling and injection of neuroactive substances on behavior and electrophysiological patterns may offer a model of how limbic seizures in humans increase the vulnerability of TLE patients to psychiatric symptoms.
Resumo:
With life expectancies increasing around the world, populations are getting age and neurodegenerative diseases have become a global issue. For this reason we have focused our attention on the two most important neurodegenerative diseases: Parkinson’s and Alzheimer’s. Parkinson’s disease is a chronic progressive neurodegenerative movement disorder of multi-factorial origin. Environmental toxins as well as agricultural chemicals have been associated with PD. Has been observed that N/OFQ contributes to both neurotoxicity and symptoms associated with PD and that pronociceptin gene expression is up-regulated in rat SN of 6-OHDA and MPP induced experimental parkinsonism. First, we investigated the role of N/OFQ-NOP system in the pathogenesis of PD in an animal model developed using PQ and/or MB. Then we studied Alzheimer's disease. This disorder is defined as a progressive neurologic disease of the brain leading to the irreversible loss of neurons and the loss of intellectual abilities, including memory and reasoning, which become severe enough to impede social or occupational functioning. Effective biomarker tests could prevent such devastating damage occurring. We utilized the peripheral blood cells of AD discordant monozygotic twin in the search of peripheral markers which could reflect the pathology within the brain, and also support the hypothesis that PBMC might be a useful model of epigenetic gene regulation in the brain. We investigated the mRNA levels in several genes involve in AD pathogenesis, as well DNA methylation by MSP Real-Time PCR. Finally by Western Blotting we assess the immunoreactivity levels for histone modifications. Our results support the idea that epigenetic changes assessed in PBMCs can also be useful in neurodegenerative disorders, like AD and PD, enabling identification of new biomarkers in order to develop early diagnostic programs.