885 resultados para Ambient oxigen concentration
Resumo:
This paper proposes a methodology to predict benzene uptake rate in ambient air, using passive samplers with Tenax TA. Variations in the uptake rate were found to occur as a function of the sampling time; and were greater at the beginning of sampling. An empirical model was obtained and values for uptake rate agree with literature. Concentration prediction errors can be minimized by using sampling times of 4 to 14 days, thus avoiding the influence of excessive uptake rates in the initial days and the influence of back diffusion at the end of the sampling period.
Resumo:
The swine breeder rearing environment directly affects the animal's performance. This research had the objective of developing a thermal, aerial and acoustic environmental evaluation pattern for boar housing. The experiment was carried on a commercial swine farm in Salto County -SP, Brazil. Thermal, aerial and acoustic environment data of rearing conditions were registered. Data were statistically analyzed using as threshold the ideal housing environment that leads to animal welfare. Results showed that ambient temperature was around 70% beyond normal range, while air relative humidity, air speed and gases concentration were within threshold values. Noise level data besides being within normal range did not present large variation. In relation to the fuzzy logic analysis it was possible to build up a scenario which indicated that the best welfare indexes to male swine breeders happens when thermal comfort index are close to 80%, and noise level is lower than 40 dB. In the other hand the worst welfare index occur in the sector where the thermal comfort values are below 40% at the same time that the noise level is higher than 80 dB leading to inadequate conditions to the animal, and may directly interfere in the reproduction system performance.
Resumo:
Report of an early case of Shy-Drager syndrome in a 67 year-old woman patient. Autonomic failure was diagnosed by functional evaluation as well as laboratory tests. MR imaging disclosed a prominent putamina hypodensity in T2-weighted images at high field strength due to iron increased depositing in this basal ganglia. MR imaging evidences confirm Shy-Drager syndrome diagnosis, and contributes for differential diagnosis of idiopathic hypotension (pure autonomic failure) in special in SDS early cases.
Resumo:
PURPOSE: To evaluate the effect of the use of 0.5% and 2% chlorhexidine digluconate on the immediate bond strength of a conventional adhesive system to dentin in primary teeth. METHODS: Twenty-one healthy primary molars were divided into three groups (n=7), being one control (A) and two experimental groups (B and C). After dentin exposure, in Group (A) the adhesive procedure was performed using 37% phosphoric acid gel (15 s); dentin was washed (15 s), air dried (30 s) and rehydrated with water. Groups B and C followed similar procedures but for re-hydration with 0.5% and 2% chlorhexidine, respectively, for 30 s. A resin composite block was built simulating a restoration, and the teeth were stored in distilled water at 37°C for 24 h before the microtensile bond strength test. The bond strength data were analyzed by analysis of variance. RESULTS: No statistically significant difference in bond strength was found among the tested groups (P>0.05) CONCLUSION: The 0.5% and 2% concentrations of chlorhexidine presented similar behavior and caused no adverse effects on the bond strength to dentin in primary teeth.
Resumo:
In order to verify the influence of chronic and acute ambient oxygen levels from egg to adult stage of the zebrafish, in vivo oxygen consumption (MO2), critical tensions of oxygen (Pcrit), heart rate (fH) and total body lactate concentration (Lc) were determined for Danio rerio (Hamilton, 1822) raised at 28 °C under normoxic (7.5 mgO2.L-1 or 80 mm.Hg-1) and hypoxic conditions (4.3 mgO2.L-1) and exposed to acute hypoxia during different developmental stages. Our findings confirmed that very early stages do not respond effectively to ambient acute hypoxia. However, after the stage corresponding to the age of 30 days, D. rerio was able to respond to acute hypoxia through effective physiological mechanisms involving aerobic and anaerobic metabolism. Such responses were more efficient for the fishes reared under hypoxia which showed that D. rerio survival capability increased during acclimation to mild hypoxia. Measurements of body mass and length showed that moderate hypoxia did not affect growth significantly until the fish reached the stage of 60 days. Moreover, a growth delay was verified for the hypoxic-reared animals. Also, the D. rerio eggs-to-larvae survival varied from 87.7 to 62.4% in animals reared under normoxia and mild hypoxia, respectively. However, the surviving animals raised under moderated hypoxia showed a better aptitude to regulate aerobic and anaerobic capacities when exposed to acute hypoxia.
Resumo:
In this work, the development and evaluation of a hyphenated flow injection-capillary electrophoresis system with on-line pre-concentration is described. Preliminary tests were performed to investigate the influence of flow rates over the analytical signals. Results revealed losses in terms of sensitivity of the FIA-CE system when compared to the conventional CE system. To overcome signal decrease and to make the system more efficient, a lower flow rate was set and an anionic resin column was added to the flow manifold in order to pre-concentrate the analyte. The pre-concentration FIA-CE system presented a sensitivity improvement of about 660% and there was only a small increase of 8% in total peak dispersion. These results have confirmed the great potential of the proposed system for many analytical tasks especially for low concentration samples.
Resumo:
The objective of this study was to extract and concentrate calcium oxalate (CaOx) crystals from plant leaves that form the above mentioned crystals. The chemical and physical studies of CaOx from plant to be performed depend on an adequate amount of the crystals. The plant used in this study was croton (Codiaeum variegatum). The leaves were ground in a heavy duty blender and sieved through a 0.20 mm sieve. The suspension obtained was suspended in distilled water. The crystals were concentrated at the bottom of a test tube. The supernatant must be washed until it is free of plant pigments and other organic substances. Biogenic CaOx crystals have well-defined and sharp peaks, indicating very high crystallinity. Moreover, the CaOx crystals were not damaged during the extraction procedure, as can be seen on the scanning electron microscope images. The porposed method can be considered efficient to extract and concentrate biogenic calcium oxalate.
Resumo:
OBJECTIVE: New drugs have to be assessed in endodontic therapy due to the presence of microorganisms resistant to therapeutic procedures. Thus, this study evaluated the time- and concentration-dependent cytotoxicity of different antibiotics used in endodontic therapy. MATERIAL AND METHODS: Human gingival fibroblasts were treated and divided into the following experimental groups: Group I - control; Group II - ciprofoxacin hydrochloride; Group III - clyndamicin hydrochloride; and Group IV - metronidazole. Each drug was used at concentrations of 5, 50, 150, and 300 mg/L for 24, 48, 72, and 96 h. Cytotoxicity was evaluated by the MTT assay [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and spectrophotometric reading of ELISA plates. The results were analyzed by BioEstat 4.0 software using Kruskal-Wallis and Dunn's tests at a signifcance level of 5%. Cell viability was assessed for the different concentrations and times. RESULTS: All drugs presented dose-dependent cytotoxicity. Concentrations of 5 and 50 mgjL produced viable fibroblasts at all experimental times in all groups. CONCLUSIONS: Cell viability at 24 h was greater than in the other experimental times. Comparison between the same concentrations of antibiotics at different times showed that metronidazole presented the highest cell viability at 72 and 96 h compared to the other antibiotics, whereas clyndamicin hydrochloride showed higher cell viability at 72 h than ciprofoxacin hydrochloride.
Resumo:
Background This study aimed to evaluate the association between the total suspended particles (TSP) generated from burning sugar cane plantations and the incidence of hospital admissions from hypertension in the city of Araraquara. Methods The study was an ecological time-series study. Total daily records of hypertension (ICD 10th I10-15) were obtained from admitted patients of all ages in a hospital in Araraquara, Sao Paulo State, Brazil, from 23 March 2003 to 27 July 2004. The daily concentration of TSP (mu g/m(3)) was obtained using a Handi-Vol sampler placed in downtown Araraquara. The local airport provided daily measures of temperature and humidity. In generalised linear Poisson regression models, the daily number of hospital admissions for hypertension was considered to be the dependent variable and the daily TSP concentration the independent variable. Results TSP presented a lagged effect on hypertension admissions, which was first observed 1 day after a TSP increase and remained almost unchanged for the following 2 days. A 10 mu g/m(3) increase in the TSP 3 day moving average lagged in 1 day led to an increase in hypertension-related hospital admissions during the harvest period (12.5%, 95% CI 5.6% to 19.9%) that was almost 30% higher than during non-harvest periods (9.0%, 95% CI 4.0% to 14.3%). Conclusions Increases in TSP concentrations were associated with hypertension-related hospital admissions. Despite the benefits of reduced air pollution in urban cities achieved by using ethanol produced from sugar cane to power automobiles, areas where the sugar cane is produced and harvested were found to have increased public health risk.
Resumo:
Background: Drosophila retinal architecture is laid down between 24-48 hours after puparium formation, when some of the still uncommitted interommatidial cells (IOCs) are recruited to become secondary and tertiary pigment cells while the remaining ones undergo apoptosis. This choice between survival and death requires the product of the roughest (rst) gene, an immunoglobulin superfamily transmembrane glycoprotein involved in a wide range of developmental processes. Both temporal misexpression of Rst and truncation of the protein intracytoplasmic domain, lead to severe defects in which IOCs either remain mostly undifferentiated and die late and erratically or, instead, differentiate into extra pigment cells. Intriguingly, mutants not expressing wild type protein often have normal or very mild rough eyes. Methodology/Principal Findings: By using quantitative real time PCR to examine rst transcriptional dynamics in the pupal retina, both in wild type and mutant alleles we showed that tightly regulated temporal changes in rst transcriptional rate underlie its proper function during the final steps of eye patterning. Furthermore we demonstrated that the unexpected wild type eye phenotype of mutants with low or no rst expression correlates with an upregulation in the mRNA levels of the rst paralogue kin-of-irre (kirre), which seems able to substitute for rst function in this process, similarly to their role in myoblast fusion. This compensatory upregulation of kirre mRNA levels could be directly induced in wild type pupa upon RNAi-mediated silencing of rst, indicating that expression of both genes is also coordinately regulated in physiological conditions. Conclusions/Significance: These findings suggest a general mechanism by which rst and kirre expression could be fine tuned to optimize their redundant roles during development and provide a clearer picture of how the specification of survival and apoptotic fates by differential cell adhesion during the final steps of retinal morphogenesis in insects are controlled at the transcriptional level.
Resumo:
Objective: The aim of this study was to assess the effects of 830 and 670 nm laser on malondialdehyde (MDA) concentration in random skin-flap survival. Background Data: Low-level laser therapy (LLLT) has been reported to be successful in stimulating the formation of new blood vessels and activating superoxide-dismutase delivery, thus helping the inhibition of free-radical action and consequently reducing necrosis. Materials and Methods: Thirty Wistar rats were used and divided into three groups, with 10 rats in each one. A random skin flap was raised on the dorsum of each animal. Group 1 was the control group; group 2 received 830 nm laser radiation; and group 3 was submitted to 670 nm laser radiation. The animals underwent laser therapy with 36 J/cm(2) energy density immediately after surgery and on the 4 days subsequent to surgery. The application site of the laser radiation was 1 point, 2.5 cm from the flap's cranial base. The percentage of the skin-flap necrosis area was calculated 7 days postoperative using the paper-template method, and a skin sample was collected immediately after as a way of determining the MDA concentration. Results: Statistically significant differences were found between the necrosis percentages, with higher values seen in group 1 compared with groups 2 and 3. Groups 2 and 3 did not present statistically significant differences (p > 0.05). Group 3 had a lower concentration of MDA values compared to the control group (p < 0.05). Conclusion: LLLT was effective in increasing the random skin-flap viability in rats, and the 670 nm laser was efficient in reducing the MDA concentration.
Resumo:
Background: Papillary thyroid carcinoma (PTC) is frequently associated with a RET gene rearrangement that generates a RET/PTC oncogene. RET/PTC is a fusion of the tyrosine kinase domain of RET to the 50 portion of a different gene. This fusion results in a constitutively active MAPK pathway, which plays a key role in PTC development. The RET/PTC3 fusion is primarily associated with radiation-related PTC. Epidemiological studies show a lower incidence of PTC in radiation-exposed regions that are associated with an iodine-rich diet. Since the influence of excess iodine on the development of thyroid cancer is still unclear, the aim of this study is to evaluate the effect of high iodine concentrations on RET/PTC3-activated thyroid cells. Methods: PTC3-5 cells, a rat thyroid cell lineage harboring doxycycline-inducible RET/PTC3, were treated with 10(-3) M NaI. Cell growth was analyzed by cell counting and the MTT assay. The expression and phosphorylation state of MAPK pathway-related (Braf, Erk, pErk, and pRet) and thyroid-specific (natrium-iodide symporter [Nis] and thyroid-stimulating hormone receptor [Tshr]) proteins were analyzed by Western blotting. Thyroid-specific gene expression was further analyzed by quantitative reverse transcription (RT)-polymerase chain reaction. Results: A significant inhibition of proliferation was observed, along with no significant variation in cell death rate, in the iodine-treated cells. Further, iodine treatment attenuated the loss of Nis and Tshr gene and protein expression induced by RET/PTC3 oncogene induction. Finally, iodine treatment reduced Ret and Erk phosphorylation, without altering Braf and Erk expression. Conclusion: Our results indicate an antioncogenic role for excess iodine during thyroid oncogenic activation. These findings contribute to a better understanding of the effect of iodine on thyroid follicular cells, particularly how it may play a protective role during RET/PTC3 oncogene activation.
Resumo:
Measurements of polar organic marker compounds were performed on aerosols that were collected at a pasture site in the Amazon basin (Rondonia, Brazil) using a high-volume dichotomous sampler (HVDS) and a Micro-Orifice Uniform Deposit Impactor (MOUDI) within the framework of the 2002 LBA-SMOCC (Large-Scale Biosphere Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall, and Climate: Aerosols From Biomass Burning Perturb Global and Regional Climate) campaign. The campaign spanned the late dry season (biomass burning), a transition period, and the onset of the wet season (clean conditions). In the present study a more detailed discussion is presented compared to previous reports on the behavior of selected polar marker compounds, including levoglucosan, malic acid, isoprene secondary organic aerosol (SOA) tracers and tracers for fungal spores. The tracer data are discussed taking into account new insights that recently became available into their stability and/or aerosol formation processes. During all three periods, levoglucosan was the most dominant identified organic species in the PM(2.5) size fraction of the HVDS samples. In the dry period levoglucosan reached concentrations of up to 7.5 mu g m(-3) and exhibited diel variations with a nighttime prevalence. It was closely associated with the PM mass in the size-segregated samples and was mainly present in the fine mode, except during the wet period where it peaked in the coarse mode. Isoprene SOA tracers showed an average concentration of 250 ng m(-3) during the dry period versus 157 ng m(-3) during the transition period and 52 ng m(-3) during the wet period. Malic acid and the 2-methyltetrols exhibited a different size distribution pattern, which is consistent with different aerosol formation processes (i.e., gas-to-particle partitioning in the case of malic acid and heterogeneous formation from gas-phase precursors in the case of the 2-methyltetrols). The 2-methyltetrols were mainly associated with the fine mode during all periods, while malic acid was prevalent in the fine mode only during the dry and transition periods, and dominant in the coarse mode during the wet period. The sum of the fungal spore tracers arabitol, mannitol, and erythritol in the PM(2.5) fraction of the HVDS samples during the dry, transition, and wet periods was, on average, 54 ng m(-3), 34 ng m(-3), and 27 ng m(-3), respectively, and revealed minor day/night variation. The mass size distributions of arabitol and mannitol during all periods showed similar patterns and an association with the coarse mode, consistent with their primary origin. The results show that even under the heavy smoke conditions of the dry period a natural background with contributions from bioaerosols and isoprene SOA can be revealed. The enhancement in isoprene SOA in the dry season is mainly attributed to an increased acidity of the aerosols, increased NO(x) concentrations and a decreased wet deposition.
Resumo:
Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of multi-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens.
Resumo:
Thermodiffusion in a lyotropic mixture of water and potassium laurate is investigated by means of an optical technique (Z scan) distinguishing the index variations due to the temperature gradient and the mass gradients. A phenomenological framework allowing for coupled diffusion is developed in order to analyze thermodiffusion in multicomponent systems. An observable parameter relating to the mass gradients is found to exhibit a sharp change around the critical micellar concentration, and thus may be used to detect it. The change in the slope is due to the markedly different values of the Soret coefficients of the surfactant and the micelles. The difference in the Soret coefficients is due to the fact that the micellization process reduces the energy of interaction of the ball of amphiphilic molecules with the solvent.