876 resultados para Aluminum compounds


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetoresistance measurements in p-type Pb(1-x)Eu(x)Te alloys, for x varying from 0% up to 5%, have been used to investigate localization and antilocalization effects. These are attributed to both the spin-orbit scattering and to the large Zeeman splitting present in these alloys due to the large values of the effective Lande g factor. The magnetoresistance curves are analyzed using the model of Fukuyama and Hoshino, which takes into account the spin-orbit and Zeeman scattering mechanisms. The spin-orbit scattering time is found to be independent of the temperature, while the inelastic-scattering time increases with decreasing temperature suggesting the electron-phonon interaction as the main scattering mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carotenoids are biosynthetic organic pigments that constitute an important class of one-dimensional pi-conjugated organic molecules with enormous potential for application in biophotonic devices. In this context, we studied the degenerate two-photon absorption (2PA) cross-section spectra of two carotenoid compounds (beta-carotene and beta-apo-8'-carotenal) employing the conventional and white-light-continuum Z-scan techniques and quantum chemistry calculations. Because carotenoids coexist at room temperature as a mixture of isomers, the 2PA spectra reported here are due to samples containing a distribution of isomers, presenting distinct conjugation length and conformation. We show that these compounds present a defined structure on the 2PA spectra, that peaks at 650 nm with an absorption cross-section of approximately 5000 GM, for both compounds. In addition, we observed a 2PA band at 990 nm for beta-apo-8'-carotenal, which was attributed to a overlapping of I(I)B(u) +-like and 2(I)Ag(-)-like states, which are strongly one- and two-photon allowed, respectively. Spectroscopic parameters of the electronic transitions to singlet-excited states, which are directly related to photophysical properties of these compounds, were obtained by fitting the 2PA spectra using the sum-over-states approach. The analysis and interpretations of the 2PA spectra of the investigated carotenoids were supported by theoretical predictions of one- and two-photon transitions carried out using the response functions formalism within the density functional theory framework, using the long-range corrected CAM-B3LYP functional. (C) 2011 American Institute of Physics. [doi:10.1063/1.3590157]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report experimental and theoretical studies of the two-photon absorption spectrum of two nitrofuran derivatives: nitrofurantoine, (1-(5-nitro-2-furfurilideneamine)-hidantoine) and quinifuryl, 2-(5`-nitro-2`-furanyl) ethenyl-4-{N-[4`-(N,N-diethylamino)-1`-methylbutyl]carbamoyl} quinoline. Both molecules are representative of a family of 5-nitrofuran-ethenyl-quinoline drugs that have been demonstrated to display high toxicity to various species of transformed cells in the dark. We determine the two-photon absorption cross-section for both compounds, from 560 to 880 nm, which present peak values of 64 GM for quinifuryl and 20 GM for nitrofurantoine (1 GM = 1 x 10(-50) cm(4).s.photon(-1)). Besides, theoretical calculations employing the linear and quadratic response functions were carried out at the density functional theory level to aid the interpretations of the experimental results. The theoretical results yielded oscillator strengths, two-photon transition probabilities, and transition energies, which are in good agreement with the experimental data. A higher number of allowed electronic transitions was identified for quinifuryl in comparison to nitrofurantoine by the theoretical calculations. Due to the planar structure of both compounds, the differences in the two-photon absorption cross-section values are a consequence of their distinct conjugation lengths. (c) 2011 American Institute of Physics. [doi:10.1063/1.3514911]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the one- and two-photon absorption spectra of seven azoaromatic compounds (five pseudostilbenes-type and two aminoazobenzenes) were theoretically investigated using the density functional theory combined with the response functions formalism. The equilibrium molecular structure of each compound was obtained at three different levels of theory: Hartree-Fock, density functional theory (DFT), and Moller-Plesset 2. The effect of solvent on the equilibrium structure and the electronic transitions of the compounds were investigated using the polarizable continuum model. For the one-photon absorption, the allowed pi ->pi(*) transition energy showed to be dependent on the molecular structures and the effect of solvent, while the n ->pi(*) and pi ->pi(*)(n) transition energies exhibited only a slight dependence. An inversion between the bands corresponding to the pi ->pi(*) and n ->pi(*) states due to the effect of solvent was observed for the pseudostilbene-type compounds. To characterize the allowed two-photon absorption transitions for azoaromatic compounds, the response functions formalism combined with DFT using the hybrid B3LYP and PBE0 functionals and the long-range corrected CAM-B3LYP functional was employed. The theoretical results support the previous findings based on the three-state model. The model takes into account the ground and two electronic excited states and has already been used to describe and interpret the two-photon absorption spectrum of azoaromatic compounds. The highest energy two-photon allowed transition for the pseudostilbene-type compounds shows to be more effectively affected (similar to 20%) by the torsion of the molecular structure than the lowest allowed transition (similar to 10%). In order to elucidate the effect of the solvent on the two-photon absorption spectra, the lowest allowed two-photon transition (dipolar transition) for each compound was analyzed using a two-state approximation and the polarizable continuum model. The results obtained reveal that the effect of solvent increases drastically the two-photon cross-section of the dipolar transition of the pseudostilbene-type compounds. In general, the features of both one- and two-photon absorption spectra of the azoaromatic compounds are well reproduced by the theoretical calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti K-edge x-ray absorption near-edge spectroscopy (XANES) and Raman scattering were used to study the solid solution effects on the structural and vibrational properties of Pb(1-x)Ba(x)Zr(0.65)Ti(0.35)O(3) with 0.0 < x < 0.40. Compared with x-ray diffraction techniques, which indicates that the average crystal symmetry changes with the substitution of Pb by Ba ions or with temperature variations for samples with x=0.00, 0.10, and 0.20, local structural probes such as XANES and Raman scattering results demonstrate that at local level, the symmetry changes are much less prominent. Theoretical XANES spectra calculation corroborate with the interpretation of the XANES experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we employed the effective coordination concept to study the local environments of the Ge, Sb, and Te atoms in the Ge(m)Sb(2n)Te(m+3n) compounds. From our calculations and analysis, we found an average effective coordination number (ECN) reduction of 1.59, 1.42, and 1.37, for the Ge, Sb, Te atoms in the phase transition from crystalline, ECN=5.55 (Ge), 5.73 (Sb), 4.37 (Te), to the amorphous phase, ECN=3.96 (Ge), 4.31 (Sb), 3.09 (Te), for the Ge(2)Sb(2)Te(5) composition. Similar changes are observed for other compositions. Thus, our results indicate that the coordination changes from the crystalline to amorphous phase are not large as previously assumed in the literature, i.e., from sixfold to fourfold for Ge, which can contribute to obtain a better understanding of the crystalline to amorphous phase transition. (C) 2011 American Institute of Physics. [doi:10.1063/1.3533422]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Candida rugosa lipase was immobilized by covalent binding on hybrid matrix of polysiloxane-polyvinyl alcohol chemically modified with different activating agents as glutaraldehyde, sodium metaperiodate and carbonyldiimidazole. The experimental results suggested that functional activating agents render different interactions between enzyme and support, producing consequently alterations in the optimal reaction conditions. Properties of the immobilized systems were assessed and their performance on hydrolytic and synthetic reactions were evaluated and compared with the free enzyme. In hydrolytic reactions using p-nitrophenyl palmitate as substrate all immobilized systems showed higher thermal stability and optima pH and temperature values in relation to the free lipase. Among the activating compounds, carbonyldiimidazole resulted in a total recovery of activity on the support and the highest thermal stability. For the butyl butyrate synthesis, the best performance (molar conversion of 95% and volumetric productivity of 2.33 g L-1 h(-1)) was attained with the lipase immobilized on POS-PVA activated with sodium metaperiodate. The properties of the support and immobilized derivatives were also evaluated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopies and chemical composition (FTIR). (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wastewater containing several dyes, including sulfur black from the dyeing process in a textile mill, was treated using a UV/H(2)O(2) process. The wastewater was characterized by a low BOD/ COD ratio, intense color and high acute toxicity to the algae species Pseudokirchneriella subcaptata. The influence of the pH and H(2)O(2) concentration on the treatment process was evaluated by a full factorial design 2(2) with three replicates of the central experiment. The removal of aromatic compounds and color was improved by an increase in the H(2)O(2) concentration and a decrease in pH. The best results were obtained at pH 5.0 and 6 g L(-1). With these conditions and 120 min of UV irradiation, the removal of the color, aromatic compounds and COD were 74.1, 55.1 and 44.8%, respectively. Under the same conditions, but using a photoreactor covered with aluminum foil, the removal of the color, aromatic compounds and COD were 92.0, 77.6 and 59.4%, respectively. Moreover, the use of aluminum foil reduced the cost of the treatment by 40.8%. These results suggest the potential application of reflective materials as a photoreactor accessory to reduce electric energy consumption during the UV/H(2)O(2) process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work work evaluates linoleic acid peroxidation reactions initiated by Fe(3+)-reducing compounds recovered from Eucalyptus grandis, biotreated with the biopulping fungus Ceriporiopsis subvermispora. The aqueous extracts from biotreated wood had the ability to reduce Fe(3+) ions from freshly prepared solutions. The compounds responsible for the Fe(3+)-reducing activity corresponded to UV-absorbing substances with apparent molar masses from 3 kDa to 5 kDa. Linoleic acid peroxidation reactions conducted in the presence of Fe(3+) ions and the Fe(3+)-reducing compounds showed that the rate of O(2) consumption during peroxidation was proportional to the Fe(3+)-reducing activity present in each extract obtained from biotreated wood. This peroxidation reaction was coupled with in-vitro treatment of ball-milled E. grandis wood. Ultraviolet data showed that the reaction system released lignin fragments from the milled wood. Size exclusion chromatography data indicated that the solubilized material contained a minor fraction representing high-molar-mass molecules excluded by the column and a main low-molar-mass peak. Overall evaluation of the data suggested that the Fe(3+)-reducing compounds formed during wood biodegradation by C subvermispora can mediate lignin degradation through linoleic acid peroxidation. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inhibitory action of acetic acid, ferulic acid, and syringaldehyde on metabolism of Candida guilliermondii yeast during xylose to xylitol bioconversion was evaluated. Assays were performed in buffered and nonbuffered semidefined medium containing xylose as main sugar (80.0 g/l), supplemented or not with acetic acid (0.8-2.6 g/l), ferulic acid (0.2-0.6 g/l), and/or syringaldehyde (0.3-0.8 g/l), according to a 2(3) full factorial design. Since only individual effects of the variables were observed, assays were performed in a next step in semidefined medium containing different concentrations of each toxic compound individually, for better understanding of their maximum concentration that can be present in the fermentation medium without affecting yeast metabolism. It was concluded that acetic acid, ferulic acid, and syringaldehyde are compounds that may affect Candida guilliermondii metabolism (mainly cell growth) during bioconversion of xylose to xylitol. Such results are of interest and reveal that complete removal of toxic compounds from the fermentation medium is not necessary to obtain efficient conversion of xylose to xylitol by Candida guilliermondii. Fermentation in buffered medium was also considered as an alternative to overcome the inhibition caused by these toxic compounds, mainly by acetic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the potential for fermentation of raspberry pulp, sixteen yeast strains (S. cerevisiae and S. bayanus) were studied. Volatile compounds were determined by GC-MS, GC-FID, and GC-PFPD. Ethanol. glycerol and organic acids were determined by HPLC. HPLC-DAD was used to analyse phenolic acids. Sensory analysis was performed by trained panellists. After a screening step, CAT-1, UFLA FW 15 and S. bayanus CBS 1505 were previously selected based on their fermentative characteristics and profile of the metabolites identified. The beverage produced with CAT-1 showed the highest volatile fatty acid concentration (1542.6 mu g/L), whereas the beverage produced with UFLA FIN 15 showed the highest concentration of acetates (2211.1 mu g/L) and total volatile compounds (5835 mu g/L). For volatile sulphur compounds. 566.5 mu g/L were found in the beverage produced with S. bayanus CBS 1505. The lowest concentration of volatile sulphur compounds (151.9 mu g/L) was found for the beverage produced with UFLA FW 15. In the sensory analysis, the beverage produced with UFLA FW 15 was characterised by the descriptors raspberry, cherry, sweet, strawberry, floral and violet. In conclusion, strain UFLA FW 15 was the yeast that produced a raspberry wine with a good chemical and sensory quality. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The hydrolysis of hemicellulosic material can provide liquor with high xylose concentration (which can be used as a fermentation medium) and phenolic compounds (Phs), potentially immunostimulating compounds. However, these hydrolysates must be detoxified in order to remove the Phs that can act as inhibitors in bioconversions. RESULTS: Aqueous two-phase systems composed of thermoseparating copolymers were used for rice straw hydrolysate detoxification. The hydrolysis process was able to promote chemical breakdown of 85% of the total hemicellulose content, 14% of the cellulose, and 2% of the lignin. The hydrolysate obtained contained 19.7 g L-1 of xylose and several phenolic compounds, such as vanillin, vanillic acid, ferullic acid, etc. The phenolics extraction was studied as a function of copolymer molar mass (1100 g mol(-1), 2000 g mol(-1) and 2800 g mol(-1)), their percentages (from 5% to 50%) and Phs initial concentration. Phenolic compounds extraction of around 80% was obtained under the following conditions: 20% (w/w) and 35% (w/w) copolymer 1100 g mol-1, 35% (w/w) copolymer 2000 g mol(-1) and 35% (w/w) copolymer 2800 g mol(-1) at 25 degrees C. CONCLUSIONS: The results demonstrated the viability of this method for the removal of Phs from rice straw hydrolysate, which has potential uses in bioconversion processes. (c) 2007 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallisation behaviour for alloys in the Al-rich corner in the Al-La-Ni system is reported in this paper Alloys were selected based on the topological instability criterion (lambda criterion) calculated from the alloy composition and metallic radii of the alloying elements and aluminum Amorphous ribbons were produced by melt-spinning and the crystallisation reactions were analysed by X-ray diffraction and calorimetry The results showed that increasing the values of lambda from 0.072 to 0.16 resulted in the following changes in the crystallisation behaviour, as predicted by the lambda criterion (a) nanocrystallisation of alpha-Al for the alloy composition corresponding to lambda = 0 072 and (b) detection of the glass transition temperature, T(g), for the alloys with composition close to lambda approximate to 0.1 line. For compositions corresponding to both ends of the lambda approximate to 0 1 line (near the binaries lines) T(g) could be detected only in the ""intermediary"" central region, and the alloy we produced in this region was considered the best glass former for the Al-rich corner Also, except for the alloys with the highest NI content, crystallisation proceeded by two distinct exothermic peaks which are typical of nanocrystallisation transformation. These behaviours are discussed in terms of compositional (lambda parameter) and topological aspects to account for cluster formation in the amorphous phase. Crown Copyright (C) 2009 Published by Elsevier B V All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of a new trickling filter (TF) configuration composed of an upper compartment for nitrification and a lower compartment for denitrification of effluent from a UASB reactor treating domestic sewage was evaluated. The TF was packed with new plastic material characterized by its durability and high percentage of void spaces. The feasibility of using the reduced compounds present in the biogas produced by a UASB reactor as electron donor for denitrification was also evaluated. Efficient nitrification and denitrification was achieved for the mean hydraulic (5.6 m(3) m(-2) d(-1)) organic (0.26 kg COD m(-3) d(-1)) and ammonia-N (0.08 kg m(-3) d(-1)) loading rates applied, resulting in ammonia-N removal ranging from 60 to 74%. The final effluent presented ammonia-N lower than 13 mg L(-1). Despite the presence of dissolved oxygen (DO) in the denitrification compartment, its performance was considered quite satisfactory and final nitrate concentrations were lower than 10 mg L(-1). The results indicate that methane was the main electron donor used for denitrification. Additionally, denitrification can probably be improved by avoiding high DO concentration in the denitrification compartment and by enhancing biogas transfer in the anoxic zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The different types of thermal crystallisation behaviours observed during continuous heating of M-based metallic glasses have been successfully associated with the topological instability. criterion, which is simply calculated from the alloy composition and metallic radii of the alloying elements and aluminium. In the present work, we report on new results evidencing the correlation between the values of X and the crystallisation behaviours in Al-based alloys of the Al-Ni-Ce system and we compare the glass-forming abilities of alloys designed with compositions corresponding to the same topological instability condition. The results are discussed in terms of compositional and topological aspects emphasizing the relevance of the different types of clusters in the amorphous phase in defining the stability of the glass and the types of thermal crystallisation. (C) 2008 Elsevier B.V. All rights reserved.