557 resultados para ANODIZATION LITHOGRAPHY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scanning probe lithography (SPL), employing the tip of an atomic force microscope to mechanically pattern various materials in nanoscale region has provided a simple but significant method for making nanostructures. We use this technique for the lithography of several kinds of substrate surfaces. The tip performance has been found to be a crucial factor in the lithographic process. Four types of cantilevers are employed in nanolithography, including standard silicon nitride (DNP), tapping mode(TM) etched silicon (TESP(W)), uncoated silicon cantilever (NSC21/50) and conductive platinum/iridium-coated probe. Results demonstrate that tips with smaller spring constants can not be used for physically scribing and nanomanipulating in our experiment. The possible mechanism of our experiment is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SOFT CONTACT LAMINATION; LIGHT-EMITTING DEVICES; LIFT-OFF; FABRICATION; TRANSISTORS; DIODES; FILMS; STAMP

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified tapping mode of the atomic force microscope (AFM) was introduced for manipulation, dissection, and lithography. By sufficiently decreasing the amplitude of AFM tip in the normal tapping mode and adjusting the setpoint, the tip-sample interaction can be efficiently controlled. This modified tapping mode has some characteristics of the AFM contact mode and can be used to manipulate nanoparticles, dissect biomolecules, and make lithographs on various surfaces. This method did not need any additional equipment and it can be applied to any AFM system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perovskite-type organic/inorganic hybrid layered compound (C6H5C2H4NH3)(2)PbI4 was synthesized. The patterning Of (C6H5C2H4NH3)(2)PbI4 thin films on silicon substrate was realized by the micromolding in capillaries (MIMIC) process, a kind of soft lithography. Bright green luminescent stripes with different widths (50, 15, 0.8 mum) have been obtained. The structure and optical properties Of (C6H5C2H4NH3)(2)PbI4 films were characterized by X-ray diffraction (XRD), UV/Vis absorption and photoluminescence excitation and emission spectra, respectively. It is shown that the organic-inorganic layered (C6H5C2H4NH3)(2)PbI4 film was c-axis oriented, paralleling to the substrate plane. Green exciton emission at 525 nm was observed in the film, and the explanations for it were given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicate oxyapatite La-9.33 (SiO6)(4)O-2:A (A = Eu3+, Tb3+ and/or Ce3+) phosphor films and their patterning were fabricated by a sol-gel process combined with soft lithography. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, atomic force microscopy, optical microscopy and photoluminescence spectra, as well as lifetimes, were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 800degreesC and the crystallinity increased with the increase in annealing temperatures. Transparent nonpatterned phosphor films were uniform and crack-free, which mainly consisted of rodlike grains with a size between 150 and 210 nm. Patterned thin films with different bandwidths (20, 50 mum) were obtained by the micromoulding in capillaries technique. The doped rare earth ions (Eu3+, Tb3+ and Ce3+) showed their characteristic emission in crystalline La-9.33(SiO6)(4)O-2 phosphor films, i.e. Eu3+ D-5(0)-F-7(J) (J = 0, 1, 2, 3, 4), Tb3+ D-5(3,4)-F-7(J) (J = 3, 4, 5, 6) and Ce3+ 5d (D-2)-4f (F-2(2/5), F-2(2/7)) emissions, respectively. Both the lifetimes and PL intensity of the Eu3+, Tb3+ ions increased with increasing annealing temperature from 800 to 1100 degreesC, and the optimum concentrations for Eu3+, Tb3+ were determined to be 9 and 7 mol% of La3+ in La-9.33(SiO6)(4)O-2 films, respectively. An energy transfer from Ce3+ to Tb3+ was observed in the La-9.33(SiO6)(4)O-2:Ce, Tb phosphor films, and the energy transfer efficiency was estimated as a function of Tb3+ concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Y2O3:Eu3+ phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with a soft lithography. X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscopy (AFM), optical microscopy, UV/vis transmission and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 500 degreesC and the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free non-patterned phosphor films were obtained, which mainly consisted of grains with an average size of 70 nm. Using micro-molding in capillaries technique, we obtained homogeneous and defects-free patterned gel and crystalline phosphor films with different stripe widths (5, 10, 20 and 50 mum). Significant shrinkage (50%) was observed in the patterned films during the heat treatment process. The doped Eu3+ showed its characteristic emission in crystalline Y2O3 phosphor films due to an efficient energy transfer from Y2O3 host to them. Both the lifetimes and PL intensity of the Eu3+ increased with increasing the annealing temperature from 500 to 900 degreesC, and the optimum concentrations for Eu3+ were determined to be 5 mol%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Gd2O3:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with a soft lithography. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and optical microscopy, UV/vis transmission and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 500 degreesC and that the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free non-patterned phosphor films were obtained by optimizing the composition of the coating sol, which mainly consisted of grains with an average size of 70 nm and a thickness of 550 nm. Using micro-molding in capillaries technique, we obtained homogeneous and defects-free patterned gel and crystalline phosphor films with different stripe widths (5, 10, 20 and 50 mum). Significant shrinkage (50%) was observed in the patterned films during the heat treatment process. The doped rare earth ions (A) showed their characteristic emission in crystalline Gd2O3 phosphor films due to an efficient energy transfer from Gd2O3 host to them. Both the lifetimes and PL intensity of the rare earth ions increased with increasing the annealing temperature from 500 to 900 degreesC, and the optimum concentrations for Eu3+, Dy3+, sm(3+), Er3+ were determined to be 5, 0.25, 1 and 1.5 mol% of Gd3+ in Gd2O3 films, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhodamine B (RB)-doped organic-inorganic silica films and their patterning were fabricated by a sol-gel process combined with a soft lithography. The resulted film samples were characterized by atomic force microscope (AFM), optical microscope and UV/Vis absorption and photoluminescence excitation and emission spectra. The effects of the concentration of the RB dye and heat treatment temperature on the optical properties of the hybrid silica films have been studied. Four kinds of patterning structures with film line widths of 5, 10, 20 and 50 mum have been obtained by micromolding in capillaries by a soft lithography technique. The RB-doped hybrid silica films present a red color, with an excitation and emission bands around 564 and 585 mum, respectively. With increasing the RB concentration, the emission intensity of the RB-doped hybrid silica films increases and the emission maximum presents a red shift. The emission intensity of the films decreases with increasing the heat treatment temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we present a mechanical pattern transfer process where a thermosetting polymer mold instead of a metal, dielectric, ceramic, or semiconductor master made by conventional lithography was used as the master to pattern thermoplastic polymers in hot embossing lithography. The thermosetting polymer mold was fabricated by a soft lithography strategy, microtransfer molding. For comparison, the thermosetting polymer mold and the silicon wafer master were both used to imprint the thermoplastic polymer, polymethylmethacrylate. Replication of the thermosetting polymer mold and the silicon wafer master was of the same quality. This indicates that the thermosetting polymer mold could be used for thermoplastic polymer patterning in hot embossing lithography with high fidelity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

软刻蚀是一类基于自组装和复制模塑等原理的非光刻微米和纳米加工方法。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline YVO4:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with soft lithography. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscopy (AFM) and optical microscopy, UV/vis transmission and absorption spectra, photoluminescence (PL) spectra, and lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 400 degreesC and the crystallinity increased with the increase of annealing temperatures. Transparent nonpatterned phosphor films were uniform and crack-free, which mainly consisted of grains with an average size of 90 nm. Patterned gel and crystalline phosphor film bands with different widths (5-60 mum) were obtained. Significant shrinkage and a few defects were observed in the patterned films during the heat treatment process. The doped rare earth ions (A) showed their characteristic emission in crystalline YVO4 phosphor films because of an efficient energy transfer from vanadate groups to them. The Sm3+ and Er3+ ions also showed upconversion luminescence in a YVO4 film host. Both the lifetimes and PL intensity of the rare earth ions increased with increasing annealing temperature from 400 to 800 degreesC, and the optimum concentration for Eu3+ was determined to be 7 mol % and those for Dy3+, Sm3-, and Er3+ were 2 Mol % of Y3- in YVO4 films, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this presentation, nanocrystalline YVO4:A (A=Eu3+, Dy3+, SM3+, Er3+) phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with a soft lithography (micro-molding in capillaries). XRD, FT-IR, AFM and optical microscope, absorption spectra, photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 400 degrees C and the crystallinity increased with the increase of annealing temperatures. Transparent nonpattemed phosphor films were uniform and crack free, which mainly consisted of grains with an average size of 90nm. Patterned crystalline phosphor film bands with different widths (5-30 mu m) were obtained. The doped rare earth ions (A) showed their characteristic emission in crystalline YVO4 phosphor films due to an efficient energy transfer from vanadate groups to them. The Sm3+ and Er3+ ions also showed upconversion luminescence in YVO4 film host. The optimum concentration for Eu3+ was determined to be 7 mol% and those for Dy3+, Sm3+, Er3+ were 2 Mol% of Y3+ in YVO4 films, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigated well-ordered block copolymer (BCP) thin film characteristics and their use for nanoscale pattern formation using a series of polystyrene-block-polymethylmethacrylate (PS-b-PMMA), polystyrene-blockpolydimethylsiloxane (PS-b-PDMS) and polystyrene-block-poly(ethylene oxide) (PS-b-PEO) systems of various molecular weights. BCP thin films, which act as an ‘on-chip’ etch mask and material templates, are highly promising self-assembling process for future scalable nanolithography. Unlike conventional BCP processing methods, the work in this thesis demonstrates that well-ordered patterns can be achieved in a few seconds compared to several hours by use of a non-conventional microwave assisted technique. As a result, well-ordered BCP nanoscale structures can be developed in industry appropriate periods facilitating their incorporation into current technologies. An optimised and controlled plasma dry etch process was used for successful pattern transfer to the underlying silicon substrate. Long range ordered BCP templates were further modified by selective metal inclusion technique to form a hard mask template towards fabrication of high aspect ratio nanopillars and nanowires. The work described here is centred on how these templates might be used to generate function at substrate surfaces. Herein we describe a number of innovations which might allow their successful uptake in a number of applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that interferometric lithography provides a fast, simple approach to the production of patterns in self-assembled monolayers (SAMs) with high resolution over square centimeter areas. As a proof of principle, two-beam interference patterns, formed using light from a frequency-doubled argon ion laser (244 nm), were used to pattern methyl-terminated SAMs on gold, facilitating the introduction of hydroxyl-terminated adsorbates and yielding patterns of surface free energy with a pitch of ca. 200 nm. The photopatterning of SAMs on Pd has been demonstrated for the first time, with interferometric exposure yielding patterns of surface free energy with similar features sizes to those obtained on gold. Gold nanostructures were formed by exposing SAMs to UV interference patterns and then immersing the samples in an ethanolic solution of mercaptoethylamine, which etched the metal substrate in exposed areas while unoxidized thiols acted as a resist and protected the metal from dissolution. Macroscopically extended gold nanowires were fabricated using single exposures and arrays of 66 nm gold dots at 180 nm centers were formed using orthogonal exposures in a fast, simple process. Exposure of oligo(ethylene glycol)-terminated SAMs to UV light caused photodegradation of the protein-resistant tail groups in a substrate-independent process. In contrast to many protein patterning methods, which utilize multiple steps to control surface binding, this single step process introduced aldehyde functional groups to the SAM surface at exposures as low as 0.3 J cm(-2), significantly less than the exposure required for oxidation of the thiol headgroup. Although interferometric methods rely upon a continuous gradient of exposure, it was possible to fabricate well-defined protein nanostructures by the introduction of aldehyde groups and removal of protein resistance in nanoscopic regions. Macroscopically extended, nanostructured assemblies of streptavidin were formed. Retention of functionality in the patterned materials was demonstrated by binding of biotinylated proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a diffractive maskless lithographic system that is capable of rapidly performing both serial and single-shot micropatterning. Utilizing the diffractive properties of phase holograms displayed on a spatial light modulator, arbitrary intensity distributions were produced to form two and three dimensional micropatterns/structures in a variety of substrates. A straightforward graphical user interface was implemented to allow users to load templates and change patterning modes within the span of a few minutes. A minimum resolution of approximately 700 nm is demonstrated for both patterning modes, which compares favorably to the 232 nm resolution limit predicted by the Rayleigh criterion. The presented method is rapid and adaptable, allowing for the parallel fabrication of microstructures in photoresist as well as the fabrication of protein microstructures that retain functional activity.